
On Semiclassical (Zero Dispersion Limit) Solutions

of the Focusing Nonlinear Schrödinger Equation

ALEXANDER TOVBIS
University of Central Florida

STEPHANOS VENAKIDES
Duke University

AND

XIN ZHOU
Duke University

Abstract

We calculate the leading-order term of the solution of the focusing nonlinear

(cubic) Schrödinger equation (NLS) in the semiclassical limit for a certain one-

parameter family of initial conditions. This family contains both solitons and

pure radiation. In the pure radiation case, our result is valid for all times t ≥ 0.

We utilize the Riemann-Hilbert problem formulation of the inverse scattering

problem to obtain the leading-order term of the solution. Error estimates are

provided. c© 2004 Wiley Periodicals, Inc.

1 Introduction

We study the semiclassical limit of the focusing nonlinear Schrödinger equa-

tion (NLS)

(1.1) iεqt +
(

ε2

2

)
qxx + |q|2q = 0 ,

subject to a one-parameter family of initial conditions

(1.2) q(x, 0, ε) = A(x)ei S(x)/ε

with A(x) = − sech x , S′ = −µ tanh x , S(0) = 0, where µ ≥ 0. The initial value

problem for the cubic NLS equation with decaying initial data was solved in [40]

through the introduction of an appropriate Lax pair. The semiclassical problem

(i.e., small ε) has been the object of research in the last 20 years, the traditional in-

sight being that the modulational instability [18] would lead to a seemingly chaotic

type of behavior. Recent numerical studies [4, 29], however, have indicated that a

great amount of order may persist as the system evolves.

The first analytic breakthrough [24], using initial data (1.2) with µ = 0 for

which the scattering data were known [31], provided insights into the observed

structures including formulae for the short-time evolution of the initial data and for
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the passage through a first break at some point (x, t) assuming that such a break

exists. One of the assumptions is that ε takes a sequence of values for which the

problem has only pure soliton solutions. The singular passage from the pure soliton

scattering problem to a limiting continuum Riemann-Hilbert problem (RHP) with

contour coinciding with the arc of the soliton poles was established rigorously

in [28].

In the present study we prove the existence of observed waveforms and provide

the leading behavior of the solution when µ > 0, in both the pure radiation case

(globally in time) and the radiation/soliton case (up to the second break). We be-

lieve that our results extend naturally to the case µ = 0. The scattering data of our

one-parameter family of initial data (1.2) was derived explicitly in [33], in which

the Zakharov-Shabat eigenvalue problem is solved explicitly in terms of hyperge-

ometric functions.

Our analysis utilizes the “steepest descent" approach [15, 16] and its essen-

tial extension [14] (see also [13]), which introduced a systematic mechanism for

deriving the g-function (introduced in [16]) allowing the treatment of fully non-

linear waveforms. The method has been applied in a variety of problems; see

[8, 9, 10, 11]. We treat the case of the one-parameter family of initial data with a

procedure that is appropriate for the study of a wide family of scattering data with

certain global analytic properties.

Compared to the initial value problem for the small dispersion Korteweg–

de Vries (KdV) equation,

(1.3) ut − 6uux + ε2uxxx = 0 , u(x, 0) = u0(x) , ε → 0 ,

our initial value problem for the semiclassical focusing NLS equation displays

great similarity. We prove that fully nonlinear oscillations in the small (O(ε))

spatial and temporal scale emerge. As in KdV, they consist of modulated waves

described in terms of theta functions with the number of wave phases independent

of ε. The essential difference from KdV is the modulational instability [18] of

these NLS waves. As a result of the modulational instability, the absence of some

global analyticity property in the scattering data is expected to break the order in

the wave structures of the solution.

The weak small-dispersion KdV limit was first calculated in the pure soliton

case [25], where the number of solitons N is equal to the number of eigenvalues

of the corresponding Schrödinger operator and N ∼ O(1/ε), ε → 0. The solution

of KdV is given in terms of the N × N Kay-Moses determinant det(I + K ), a

simpler form of the Dyson determinant [5] that applies to pure soliton solutions.

It expands [25] into the Fredholm sum
∑

S det KS of positive determinants with S
ranging over all subsets of the set {1, 2, . . . , N } of eigenvalue indices, where KS

is the determinant that arises from K when all rows and columns indexed by an

element of S are discarded. It is shown in [25] that the largest term of the sum

produces the weak limit as ε → 0; the maximizing subset S∗ is calculated in its

continuum limit through a variational principle. More precisely, since each index
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corresponds to an eigenvalue of the associated Schrödinger operator, the limit of

the maximizer is calculated as a semiclassical density of states constrained not to

exceed the full semiclassical density of states of the initial data.

Subsequent to [25], the weak limit for the pure radiation, small-dispersion KdV

case was calculated in [36]. The Dyson determinant has a different type of kernel

in this case, and the problem is not directly reducible to the [25] case. The periodic

case was solved in [37]. Two more systems have been calculated in the small-

dispersion limit following the general approach of [25]: the defocusing nonlinear

Schrödinger equation in [23] and the Toda lattice in [12].

A similar type of calculation is also used in [7], where the analyticity of a

certain potential (this would be the scattering data in the language of our present

problem) is shown to lead to a finite number of intervals forming the support of the

maximizing density. The first rigorous construction of the support was obtained

for KdV in [32] (see also [22] for the latest result) through the analysis of the

associated Whitham system. Since our approach is different, we will not go into

the large literature on this subject.

In all these studies the limit is weak; in other words, the nonlinear oscillations

in the solution are averaged out. The Lax-Levermore procedure was strengthened

in [38] (see also [35]) to provide the strong small-dispersion limit, or more pre-

cisely, the leading asymptotic behavior of the solution of the above KdV initial

value problem as ε → 0. The result was obtained by complementing the formula-

tion in [25] with a quantum condition that forces the number of eigenvalues over

each connected component of the support of maximizing density of states to be

an integer. The Lax-Levermore maximizing density ψ∗ (the equilibrium measure

is ψ∗(z)dz) then requires the higher-order correction ψ∗ + εψ with the condition∫
ψ∗ + εψ = integer × ε over each connected component of the support of ψ∗.

The variational problem of [25] with the quantum condition has multiple solutions

ψ = ψα, labeled by the multi-integer α (an integer corresponding to each com-

ponent of the support). Each ψα contributes to the limiting determinant. Putting

together these contributions, we obtain directly the standard expansion of the theta

function that describes the asymptotic waveform. This procedure was carried out

for the Toda shock problem in [39].

In all these studies, the asymptotic analysis was carried out on the Gelfand-

Levitan-Marchenko-Dyson procedure for solving the inverse scattering problem

[5, 20, 26, 27]. On the other hand, the steepest-descent method, used here, applies

to the formulation of inverse scattering as a Riemann-Hilbert problem (RHP), an

approach initiated in [30]. A matrix m(z) constructed of solutions of the associ-

ated linear Zakharov-Shabat eigenvalue system (the first operator of the Lax pair)

depends analytically on the spectral variable z at all points of the closed complex

plane except on an oriented contour on which it experiences a jump, m+ = m−V .

The 2 × 2 jump matrix V (z) (in both KdV and NLS cases) is expressed in terms

of the scattering data, and its time evolution is very simple and explicit. The RHP

consists in deriving m(z) from V (z).
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The linear eigenvalue problem corresponding to the integration of NLS

(1.4) iεW ′ =
(

z q
q̄ −z

)
W ,

where q = q(x, 0, ε) is referred to as a potential and z ∈ C is a spectral parameter,

was studied in [33]. In this paper the scattering coefficients a and b (see [40]) and

the reflection coefficient r (0)(z) = b(z)/a(z), corresponding to (1.4), were found

as products of gamma functions:

a(z) = �(w)�(w − w+ − w−)

�(w − w+)�(w − w−)
,

b(z) = −iε2− iµ
ε

�(w)�(1 − w + w+ + w−)

�(w+)�(w−)
,

(1.5)

and

r (0)(z) = b(z)

a(z)

= −iε2− iµ
ε

�(1 − w + w+ + w−)�(w − w+)�(w − w−)

�(w+)�(w−)�(w − w+ − w−)
,

(1.6)

where

(1.7) w+ = − i

ε

(
T + µ

2

)
, w− = i

ε

(
T − µ

2

)
, w = −z

i

ε
− µ

i

2ε
+ 1

2
,

and

T =
√

µ2

4
− 1 .

In the theory of inverse scattering, the coefficient a(z) is defined in the upper z
half-plane while b(z) and the reflection coefficient are defined on the real z-axis.

In the case 0 ≤ µ < 2 the eigenvalue problem (1.4) contains points of discrete

spectrum (zeros of a(z)) at zk = T − iε(k − 1
2
) with the corresponding norming

constants

(1.8) c(0)

k = b(zk)

a′(zk)
= Resz=zk r (0)(z) .

Here k ∈ N and k < 1
2

+ |T |
ε

. Because of the Schwarz reflection symmetry of

the problem, it is sufficient to specify the discrete spectrum in the upper half-plane

only.

The main purpose of this study is to calculate the leading-order term q0(x, t, ε)
(with respect to ε) of q(x, t, ε). The time evolution of the scattering data [40] is

very simple and explicit (see below); thus, the calculation of the evolution of the

initial value problem (1.1)–(1.2) essentially consists of solving the inverse scatter-

ing problem (ISP), i.e., of reconstructing the potential q = q(x, t, ε) in (1.4) from

the explicitly available scattering data at the time t . In this paper the ISP is formu-

lated as a (multiplicative) matrix Riemann-Hilbert problem (RHP) on the complex

plane of the spectral variable z. We approximate the RHP with some model RHP
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that has an explicit solution q0(x, t, ε). We then show that this q0(x, t, ε) is a

leading asymptotic expression for the solution of the problem in which our initial

scattering data are replaced by its Stirling approximation. The tools developed in

this paper are in many cases sufficient for the calculation of the higher-order terms;

however, we have not included such calculations.

For any given pair (x, t), our procedure reduces the construction of q0(x, t, ε) to

the solution of the model RHP on a contour that consists of 2N +1 arcs {γm, j }N
j=−N

(we refer to them as “main arcs”) interlaced with 2N “complementary arcs” {γc, j },
j = ±1,±2, . . . ,±N (see Figure 2.3). The arcs, as well as their endpoints

αj = aj + ibj , j = 0, 1, . . . , 4N + 1, depend on x and t but not on ε. On

each of these arcs, whose determination is an important part of our procedure, the

2 × 2 jump matrix of the model RHP is constant with respect to z, but depends on

the parameters x , t , and ε. A major ingredient of the solution to the model RHP

is the radical R(z; x, t) =∏4N+1
j=0

√
(z − αj ) with branch cuts along the main arcs,

as well as the associated two-sheeted Riemann surface R(x, t). The solution of

the model RHP is obtained explicitly through the dual basis of holomorphic dif-

ferentials ω of R(x, t) and the corresponding Riemann theta function θ(u); see

Section 7. In a sense, we study the evolution of q(x, t, ε) through the evolution

of R(x, t), which identifies q0(x, t, ε) in a neighborhood of (x, t) as an N -phase

NLS solution. The genus 2N , N = 0, 1, . . . , of R(x, t) is physically important as

it specifies the number of oscillatory phases of the solution. By a mild abuse of ter-

minology we call it “the genus of the solution q0(x, t, ε)” or simply “the genus.” A

line on the (x, t)–plane separating regions of different genus is called a “breaking

curve.”

The main result of the paper, stated below, refers to the case µ > 0, x ≥ 0,

t ≥ 0. We have realized our above procedure in a rigorous sense in the cases of

genus 0 and 2 (due to a reflection symmetry with respect to the real axis, the genus

must be even and γ m, j = γm,− j , γ c, j = γc,− j , j = 1, 2, . . . , N , γ m,0 = γm,0). It

follows from (1.1)–(1.2) that the solution q(x, t, ε) is an even function in x for all

t . Our main theorem provides exact expressions for q0(x, t, ε) through the branch

points αj (x, t), the Riemann theta function θ , and holomorphic differentials ω,

associated with the basic cycles of the Riemann surface R(x, t), and real quantities

Wi (x, t), �i (x, t), i = 1, 2, . . . , N . In the genus 0 case, an explicit expression for

α0 = a + ib is provided by (4.27)–(4.28), whereas in general the branch points

αj (x, t) are determined through the system of moment (3.5) and integral conditions

(3.9), and the quantities Wi = Wi (x, t) and �i = �i (x, t) are determined by (3.8).

The expression for q0(x, t, ε) becomes somewhat simpler if we consider the theta

function θ and holomorphic differentials ω, associated with the basic cycles of

the Riemann surface R̃(x, t) (Figure 8.2) that consists of 2N + 1 vertical cuts

ν̃j connecting the corresponding (complex-conjugated) endpoints of the main arcs

γm, j and γ m, j , j = 0, 1, . . . , N ; see Section 8. In the expression for the genus 2N
solution (Section 8; also the main theorem with N = 1) the notation W stands for

the R
2N vector (W−N , . . . , W−1, W1, . . . , WN )T with W−i = Wi , as well as for the
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FIGURE 1.1. Riemann surface R(x, t).

piecewise constant scalar function on γm = ⋃
i γm,i that takes the value Wi on the

arc γm,i and the value W0 = 0 on the arc γm,0. Similarly, � denotes the R
2N vector

(�−N , . . . , �−1, �1, . . . , �N ) with �−i = �i , as well as the piecewise constant

function that takes the value �i on the arc γc,i .

THEOREM 1.1 (Main Theorem) There exists a breaking curve t = t0(x), x ∈ R,
with the following properties:

(i) The genus of the solution q0(x, t, ε) is zero below the curve, i.e., in the
region 0 ≤ t < t0(x).

(ii) In the solitonless (pure radiation) case µ ≥ 2, the solution in the entire
region above the breaking curve has genus exactly 2. In the case that includes
solitons, i.e., µ < 2, there exists some function t1(x), x ∈ R, t0(x) < t1(x) ≤ ∞,
such that the genus equals 2 in the region t0(x) < t < t1(x); see Figure 1.2.

(iii) The breaking curve is an even function, smooth and monotonically increas-
ing for x > 0 with the asymptotic behavior t0(x) ∼ x

2µ
as x → +∞ and

t0(x) = 1
2(µ+2)

+ 2
√

µ + 2 tan π
5

x + o(x) as x → 0+.

(iv) In the genus 0 region (0 ≤ t < t0(x)),

(1.9) q0(x, t, ε) = �α0(x, t)e−2 i
ε

∫ x
0 �α0(s,t)ds .
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(v) In the genus 2 (i.e., N = 1) region (t0(x) < t < t1(x)),

(1.10) q0(x, t, ε) = 2θ(0)θ(d1)θ(u(∞) + �̂
2π

+ d1)θ(u(∞) + �̂
2π

)

θ(u(∞))θ(u(∞) + d1)θ( �̂
2π

+ d1)θ( �̂
2π

)

×
[ 2∑

j=0

(−1) j�α2 j − i∇ ln
θ(u(∞) + �̂

2π
+ d1)θ(u(∞))

θ(u(∞) + d1)θ(u(∞) + �̂
2π

)
· ω0

]

× e
2

επ

( ∫
γm

f (0)
0

(ζ )+ π
2

ε+xζ+2tζ2+W

R+(ζ )
ζ 2 dζ+∫γc

�
R(ζ )

ζ 2 dζ+iπ�

)
,

where γm and γc denote the union of all main and all complementary arcs, re-
spectively; the theta functions and the basic holomorphic differentials ω, dual
to A-cycles, are associated with the hyperelliptic Riemann surface R̃(x, t) (see
Figures 8.2 and 8.3), and the vector ω0 ∈ C

2 is the leading coefficient of ω;

u(z) = ∫ z
α1

ω; �̂1 = − 2
ε
W , �̂2 = − 2

ε
(W + �), d1 = 1

2
(1, 1)T; f (0)

0 (z) is the

leading-order term of i
2ε

ln r (0)(z) as ε → 0; and R(z) =∏5
j=0

√
(z − αj ), and the

branch R+(z) → −z3 as z → ∞. The real constants W and � are determined
through (3.8), where W = W1 and � = �1. The value W0 of W on γm,0 is 0.

If, additionally, we assume that the function λ(z) − λ−1(z), where λ(z) is ex-
pressed through the endpoints of the vertical cuts ν̃j of R̃(x, t) as

λ(z) =
[
(z − α0)(z − α3)(z − α4)

(z − α1)(z − α2)(z − α5)

] 1
4

,

has two distinct zeros z1 and z2, then the expression for q0(x, t, ε) can be written
as

(1.11) q0(x, t, ε) = θ(u(∞) + �̂
2π

− d)θ(u(∞) + d)

θ(u(∞) − �̂
2π

+ d)θ(u(∞) − d)

× e
2

επ

( ∫
γm

f (0)
0

(ζ )+ π
2

ε+xζ+2tζ2+W

R+(ζ )
ζ 2 dζ+∫γc

�
R(ζ )

ζ 2 dζ+iπ�

) 2∑
j=0

(−1) j�αj .

Here

d = −
∫ X2(z1)

α2

ω1 −
∫ X2(z2)

α5

ω2 ,

where X2(z) is the preimage of z on the second sheet of the hyperelliptic surface
R̃(x, t). Similar to (1.10), an expression for q0(x, t, ε) through theta functions,
associated with the Riemann surface R(x, t), can be found in (1.13) below. The
formulae (1.10), (1.11), and (1.13) can be extended to genus 2N regions in the
(x, t)–plane; see Theorem 8.1, Theorem 8.2, and Theorem 7.1, respectively.

(vi) The accuracy of the above leading-term approximations is given by

(1.12) |q(x, t, ε) − q0(x, t, ε)| = O(ε) ,



884 A. TOVBIS, S. VENAKIDES, AND X. ZHOU

genus  0

genus 2

t

Pure radiation case

t (x)
0

x
genus  0

t

t (x)
genus 2

??? ???

Soliton case

0

1
t (x)

x

FIGURE 1.2. Different genus regions in the (x, t)–plane; linear behav-

ior as x → 0+, x → ∞.

locally uniformly in x and t away from the breaking curve.

Comments.

• The theorem is proven for the initial potential, which slightly differs from

(1.2). Namely, we replace the initial reflection coefficient

r (0)(z) = exp

(
−2i

ε
f (0)(z)

)
for the ISP by

r (0)

0 (z) = exp

(
−2i

ε
( f (0)

0 (z) + π

2
ε)

)
on z ∈ R ,

where f (0)(z) has asymptotic expansion in ε with the two leading terms

f (0)

0 (z) + π
2
ε. Corollary 4.8 below shows that the initial potential, corre-

sponding to r (0)

0 (z), coincides with (1.2) up to O(ε). However, the general

question of the stability of solutions to (1.1) with respect to small varia-

tions of initial data is a delicate problem that will not be considered in the

paper.

• In the case µ < 2, regions of genus greater than 2 above the breaking

curve may exist. The study of this case remains in the focus of our ongoing

research.

• Another expression for q0(x, t, ε) in the genus 2 region is given by

q0(x, t, ε) = θ(0)θ(d1)θ(u(∞) + Ŵ
2π

+ d1)θ(u(∞) + Ŵ
2π

)

θ(u(∞))θ(u(∞) + d1)θ( Ŵ
2π

+ d1)θ( Ŵ
2π

)

×
[
�

2∑
j=1

(α4 j − α4 j−2)

− i∇ ln
θ(u(∞) + Ŵ

2π
+ d1)θ(u(∞))

θ(u(∞) + d1)θ(u(∞) + Ŵ
2π

)
· ω0

]

× e
2

επ

∫
γm

f (0)
0

(ζ )+ π
2

ε+xζ+2tζ2

R+(ζ )
P(ζ )dζ

,

(1.13)
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where γm and γc denote the union of all main and all complementary arcs,

respectively; theta functions and the basic holomorphic differentials ω,

dual to α-cycles α, are associated with the hyperelliptic Riemann sur-

face R(x, t), and the vector ω0 ∈ C
2 is the leading coefficient of ω;

u(z) = ∫ z
α1

ω; Ŵ = −2 i
ε
(W + 2

∫
γc

�ω); d1 = 1
2
(1, 1)T; f (0)

0 (z) is the

leading-order term of i
2ε

ln r (0)(z) as ε → 0; the quadratic polynomial

P(z) = z2 + ∑
j=±1

∫
γm, j

ζ 2 dζ

R+(ζ )

ωj

dz , where R(z) = ∏5
j=0

√
(z − αj ) and

the branch R+(z) → −z3 as z → ∞. The real constants W and � are

determined through (3.8).

The study is divided into the following sections: an outline of the procedure,

the construction of functions g and h, prebreak evolution, the breaking curve, the

higher-genus region, the model RHP, and accuracy estimates. Some calculations

and background information can be found in the appendix.

2 Outline of the Procedure

2.1 The Riemann-Hilbert Problem P (0) for Focusing NLS

The inverse scattering procedure solves NLS via a multiplicative Riemann-Hil-

bert problem (RHP). Generally, such an RHP is set as follows: given an oriented

contour � ⊂ C and a square matrix function V (z) defined on � and satisfying

‖V ±‖L∞(�) < const, find a matrix function m(z) such that

(1) m is analytic and invertible in C \ � with continuous boundary values

m±(z), z ∈ �, obtained by approaching � from the positive and negative

side, respectively;

(2) m approaches the identity matrix I as z → ∞, and

(3) m satisfies the jump condition m+ = m−V on �.

The matrix V (z) is called the jump matrix. For more details about the RHP, refer

to [6, 41].

We label our RHP P (0), the solution matrix m(0), and the jump matrix V (0):

(2.1) RHP P (0) : m(0)
+ (z) = m(0)

− V (0)(z) , z ∈ 
(0) , m(0) → I as z → ∞ .

Our contour � = 
(0) is the union of R and small circles Ck , k = ±1,±2, . . . ,±n,

encircling each point of discrete spectrum zk . Negative indices correspond to

eigenvalues in the lower half-plane. The real axis has the natural orientation, and

the circles Ck have positive (counterclockwise) and negative orientation for pos-

itive and negative k, respectively; see Figure 2.1. The jump matrix V (0), which

depends on the parameters x , t , and ε, is given by

(2.2) V (0) =
(

1 + |r |2 r̄
r 1

)
for z real , V (0) =

(
1 0
ck

z−zk
1

)
for z ∈ Ck ,
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FIGURE 2.1. Contour 
(0).

where

(2.3) r = r(z, x, t) = r (0)(z)e(2i xz+4i t z2)/ε , ck = c(0)

k e(2i xzk+4i t z2
k )/ε .

Formulae (2.2) and (2.3) reflect the known time evolution of the spectral data; see

[40]. The evolution of the potential q(x, 0, ε), i.e., the solution to the initial value

problem (1.1)–(1.2), is given by

(2.4) q(x, t, ε) = −2(m(0)

1 )1,2 = −2 lim
z→∞

z(m(0)(z) − I )1,2 ,

where (m)i j denotes the i j th entry of the matrix m and m(0) = I +m(0)

1 /z+O(z−2);

see [6, 41]. We obtain the results of our main theorem by performing a chain of

transformations of the RHP whose effect is to peel off the leading contribution to

the solution of NLS leading to the problem P (err) (“err” stands for error) whose

jump matrix converges uniformly to the identity as ε → 0 and whose contribution

to the solution we estimate. We label the transformations P (0) → P (1) → P (2) →
P (3) → P (4) → P (err).

(1) P (0) → P (1) is a factorization of the jump matrix and concomitant contour

deformation.

(2) P (1) → P (2) replaces the scattering data with its Stirling approximation

and thus redefines the initial value problem. This study solves the redefined

problem. We show that the initial function q(x, 0, ε) corresponding to the

redefined data equals the original initial data to leading order.

(3) P (2) → P (3) introduces a phase function g; the requirement that the jump

matrix has certain factorization and decay properties determines g.

(4) P (3) → P (4) consists of contour deformations that utilize the above fac-

torization and decay properties; the contour of P (4) is the union of two

subcontours; on the first subcontour the jump matrix is piecewise constant

and on the second it converges to the identity as ε → 0; the convergence

is uniform outside of the neighborhood of a number of points.
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(5) P (4) → P (err) peels off the contribution from the first subcontour. P (err)

has a jump matrix that equals I + O(ε). We obtain a rigorous estimate for

its solution and its contribution to the solution of NLS.

2.2 Initial Jump Matrix Factorization and Contour Deformation:

The Riemann-Hilbert Problem P (1)

We factor the jump matrix V (0)

(2.5) V (0) =
(

1 r̄
0 1

)(
1 0

r 1

)
for z <

µ

2
on the real axis. The point z = µ

2
is special. There is an infinite

sequence of nonsoliton poles of r(z) (they are poles of b(z)) situated on the line

�z = µ

2
. The fact that the two matrix factors are adjoints of each other originates

in the symmetry m(0)(z)[m(0)(z̄)]∗ = I in the inverse NLS scattering problem. Due

to this symmetry, it is sufficient to specify the jump matrices only in the upper

half-plane and on the real axis.

We perform the following transformations:

• The functions r and r̄ are defined on the real axis and have analytic contin-

uations into the complex plane except the points where they have poles. We

will utilize the extension of r to the upper half-plane (left of the contour)

and of r̄ to the lower half-plane (right of the contour).

• By the rules of contour deformation, the right factor of the jump matrix

V (0) develops its own contour that splits off to the left of the half-axis

(−∞,
µ

2
) into the upper half-plane; by symmetry, the left factor splits off

to the right, into the lower half-plane. We label the two contours 
+ and


−, respectively, and we label their union 
.

• We let the deforming contours pass through all the points of discrete spec-

trum zk in the upper half-plane and through all the corresponding points

in the lower half-plane, eliminating the circular contours Ck around indi-

vidual eigenvalues zk in the process. The elimination occurs because the

difference of the jump matrix on each circle from the jump matrix of the

deforming contour has an analytic continuation inside the circle as seen

from (1.8).

• We reverse the contour orientation in 
+; thus 
 starts at −∞, proceeds

through the lower half-plane to µ

2
, and returns to −∞ through the upper

half-plane; the effect of the reversal of orientation of 
+ on its jump matrix

is that it is replaced by its inverse ( 1 0
−r 1 ). With the new contour orientation,

the symmetry between jump matrices in the upper (V +) and lower (V −)

complex half-planes is

(2.6) V −(V +)∗ = I .

Remark (Notation). We use (±) as upper indices to indicate a jump matrix or the

component of a contour on the upper or lower complex half-plane. We use (±) as
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FIGURE 2.2. Contour 
(1).

lower indices to indicate the values of a function along the left (+) or right (−)

side of the contour.

We come to the RHP P (1), equivalent to RHP P (0), with contour 
(1) = 
 ∪
{z ∈ R : z ≥ µ

2
}, 
 oriented counterclockwise, and {z ∈ R : z ≥ µ

2
} oriented from

left to right; see Figure 2.2.

(2.7) RHP P (1) :
{

m(1)(z)m(1)∗(z̄) = I, z /∈ 
(1), m(1) → I as z → ∞,

m(1)
+ = m(1)

− V (1), z ∈ 
(1),

with

(2.8) V (1) =


( 1 0

−r 1 ) for z ∈ 
+

( 1 r̄
0 1 ) for z ∈ 
−

V (0) for z >
µ

2
,

where by r = r(z) on 
+ we mean the analytic continuation of the function

r(z, x, t, ε) from the half-axis (−∞,
µ

2
) into the upper complex half-plane.

Remark (Symmetry). The contours 
 of all RHP considered henceforth satisfy the

condition 
− = 
+, the jump matrices V satisfy the symmetry condition (2.6),

V −V +∗ = I , and the solution matrices m satisfy the symmetry condition (2.7),

m(z)m∗(z̄) = I , when z is off the contour.

2.3 Modification of the Initial Value Problem: Replacement of the Ini-

tial Data by Its Leading Asymptotic, the Riemann-Hilbert Prob-

lem P (2)

The asymptotic analysis of the function r(z, ε) = r(z, ε; x, t) is carried out

in detail in the appendix. The main tool is Stirling’s formula for the asymptotic

evaluation of the gamma functions. We obtain

(2.9) r(z, ε) ∼
{

e− 2i
ε

f (z,ε) when z <
µ

2

e− 2i
ε

( f (z,ε)+2π i( µ
2 −z)) when z >

µ

2

as ε → 0
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with

f (z, ε; x, t) =
(µ

2
− z
)[ iπ

2
+ ln

(µ

2
− z
)]

+ z + T

2
ln(z + T )

+ z − T

2
ln(z − T ) − T tanh−1 T

µ/2

− xz − 2t z2 + µ

2
ln 2 + π

2
ε when �z ≥ 0 ,

(2.10)

where positive values have real logarithms and f = f (z, ε; x, t) is analytic in the

upper complex half-plane (minus the imaginary segment [0, T ] when µ < 2). The

function f is defined on the open lower complex half-plane by Schwarz reflection.

Our approach, henceforth, is that we redefine the initial data to have a reflection

coefficient given by the right-hand side of (2.9). Corollary 4.8 shows that the new

initial data agree to the order O(ε) with the original initial data q(x, 0, ε) as ε → 0.

The RHP P (2), still on contour 
(2) = 
(1) resulting from the above approxi-

mation, is

(2.11) RHP P (2) : m(2)
+ = m(2)

− V (2) , m →
(

1 0

0 1

)
as z → ∞ ,

where

(2.12) V (2) =
(

1 0

−e−2i f (z)/ε 1

)
for z ∈ 
+ , V (2) = V (0) for z >

µ

2
.

2.4 The g-Function Mechanism: The Riemann-Hilbert Problem P (3)

The goal of this step is to transform the RHP P (2) to a RHP with a jump matrix

that is piecewise constant in z in the limit ε → 0. We introduce

(2.13) m(3) = m(2)

(
e

2i
ε

g(z) 0

0 e− 2i
ε

g(z)

)
,

where the analytic in C̄ \ 
(2), complex-valued function g(z; x, t) is to be deter-

mined.

Preserving the symmetry m(3)(z)m(3)(z̄)∗ = I translates directly to the require-

ment of Schwarz reflection invariance g(z̄) = g(z) of g.

The RHP P (3) on the contour 
(3) = 
(2) = 
(1) is

RHP P (3) : m(3)
+ = m(3)

− V (3) , m(3)(∞) = e
2i
ε

g(∞)σ3 ,

where σ3 =
(

1 0

0 −1

)
,

(2.14)

V (3)
∣∣
z∈
+ =

(
e

2i
ε

(g+−g−) 0

−e
2i
ε

(g++g−− f ) e− 2i
ε

(g+−g−)

)
,

V (3)
∣∣
z∈(

µ
2 ,∞)

=
(

(1 + e− 8π
ε

(z− µ
2 ))e

2i
ε

(g+−g−) 0

e− 4π
ε

(z− µ
2 )+ 2i

ε
(g+−g−− f ) e− 2i

ε
(g+−g−)

)
.

(2.15)
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FIGURE 2.3. Main and complementary arcs.

The eventual asymptotic reduction of this matrix to a piecewise constant matrix is

achieved through two types of factorization given by the formulae

(2.16)

(
a 0

−b a−1

)
=
(

1 −ab−1

0 1

)(
0 b−1

−b 0

)(
1 −a−1b−1

0 1

)
and

(2.17)

(
a 0

−b a−1

)
=
(

1 0

−a−1b 1

)(
a 0

0 a−1

)
=
(

a 0

0 a−1

)(
1 0

−ab 1

)
,

where a and b are the (11) and (21) elements of the jump matrix. The strategy

is to define on the contour 
 a set of main arcs (full lines, Figure 2.3) and a set

of interlacing complementary arcs (dashed line) and apply the first factorization

to the former and the second to the latter. To achieve an asymptotically piecewise

constant jump matrix, we require on the upper half-plane

on main arcs: b = const,

{
ab−1 → 0 right of contour

a−1b−1 → 0 left of contour

on complementary arcs: a = const,

{
either a−1b → 0 right of contour

or ab → 0 left of contour.

(2.18)

Inserting what a and b stand for into the jump matrix for 
, we obtain directly

on main arcs: g+ + g− − f = W,

{
�(2g− − f ) < 0 right of contour

�(2g+ − f ) < 0 left of contour

on complementary arcs: g+ − g− = �,{
either �(2g− − f ) > 0 right of contour

or �(2g+ − f ) > 0 left of contour,

(2.19)

where W and � are real constants (independent of z but dependent on x and t). Of

course, W may take on different values on different main arcs and the analogous
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statement is true for �. We require the reality of W and � so that the jump ma-

trix V (3) remains bounded when ε approaches zero. The above relations suggest

introducing the function

(2.20) h(z) = 2g(z) − f (z)

that is analytic in the intersections of the domains of analyticity of g and f . Then

on main arcs: h+ + h− = 2W,

{
�h− < 0 right of contour

�h+ < 0 left of contour

on complementary arcs: h+ − h− = 2�,{
either �h− > 0 right of contour

or �h+ > 0 left of contour.

(2.21)

We will return to these relations after we have made a precise definition of the

partitioning of the contour. This partitioning includes an arc to infinity defined

below, on which factorization (2.17) and conditions (2.21) apply, and in addition

� = 0. Although we do not label this arc as complementary, it does behave as a

complementary arc with � = 0.

In the upper complex half-plane, we postulate a finite sequence of points, α0,

α2, . . . , α4N , that partition 
+, the upper half-plane part of contour 
, to a set of

arcs (see Figure 2.3)

(2.22) 
+ = (µ

2
, α0

)
, (a0, α2), (a2, α4), . . . , (α4N ,−∞) .

We define the set of main arcs and interlace with them the set of complementary

arcs and the arc to infinity as follows:

main arcs: γ +
m = (µ

2
, α0

) ∪ (α2, α4) ∪ · · · ∪ (α4N−2, α4N ) ,

complementary arcs: γ +
c = (α0, α2) ∪ (α4, α6) ∪ · · · ∪ (α4N−4, α4N−2) ,

arc to infinity: γ +
∞ = (α4N ,−∞) .

(2.23)

We label the N + 1 main arcs γ +
m,0 = (

µ

2
, α0), . . . , γ

+
m,N = (α4N−2, α4N ); we

label the N complementary arcs γ +
c,1 = (α0, α2), . . . , γ

+
c,N = (α4N−4, α4N−2). We

also label the union of the main and complementary arcs in the upper half-plane,

(2.24) γ̃ + = γ +
m ∪ γ +

c , hence 
+ = γ̃ + ∪ γ +
∞ .

The complex conjugates of the points α2k are labeled α2k+1 = ᾱ2k , k = 0, 1,

. . . , 2N ; replacing the upper plus by a minus in any of the above arcs indicates the

complex conjugates of that arc; finally, the absence of a plus or minus indicates the

union of the two, e.g., γ̃ = γ̃ + ∪ γ̃ −. All arcs of the upper and lower half-planes

inherit the orientation of 
. (The arcs γ −
m, j and γ −

c, j coincide with the arcs γm,− j

and γc,− j on Figure 1.1, j = 1, 2, . . . , N .)

On the main arcs, the reality of W and the fact that �h must be negative on

both sides imply that �h = 0. On the complementary arcs, �h must be positive

on at least one side. If �h is positive on both sides of the contour, it is conceivable
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FIGURE 2.4. Signs of �h.

that the contour may be deformed to the boundary of the set {z : �h(z) > 0} where

again �h = 0. Our analysis below shows that this is possible on the complementary

arcs, but not possible on the arc to infinity γ∞. Summarizing this together with

(2.21), we require the following zero behavior and sign structure of �h on and near

the contour (see Figure 2.4):

�h(z) = 0 when z ∈ γ̃ + , �h(z) > 0 when z ∈ γ +
∞ ,(2.25) 

left and right of γ +
m : �h(z) < 0,

across γ +
c : �h(z) changes sign,

on γ +
∞: �h(z) > 0.

(2.26)

On the upper half-plane, in the configuration that achieves the desired sign struc-

ture, we will see that the curve �h = 0 starts at point µ

2
on the real axis and follows

the contour 
+ to the point α4N (point α8 in the figure); from there it separates

from the contour and connects to point −µ

2
back on the real axis.

We normalize g (and h) up to a constant by selecting the value of W on the

main arc γm,0 to be W0 = 0. Thus, W and � now take constant real values Wi

and �i on the intervals γ +
m,i and γ +

c,i , i = 1, . . . N . We consider W and � as two

N -dimensional real vectors with components Wi and �i , i = 1, . . . N .

The simplicity of the conditions on h versus the conditions on g is, of course,

balanced by the fact that h has a jump across the real axis equal to the jump of − f ,

while g is analytic on R except at µ

2
.

2.5 Topology of the Zero Level Curve of �h and Genus of q0(x, t, ε)

The topology of the zero level curve of �h can be determined based on the

following observations:

• All branches of �h = 0 in the upper complex half-plane begin and end

at either a branch point α2k , or on the real axis, or at infinity (in the case

µ < 2 they can also originate from the segment [0, T ]).
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• As the construction of the function h in the following section shows, there

are three branches of �h = 0 emanating from each simple branch point

α2k (see (3.10)).

• On the real axis, �h = −� f , since g is required to be real on R. Thus,

direct study of � f shows that �h has two zeros z = µ

2
and z = −µ

2
on the

real axis.

• At infinity, the branches of �h = 0 are asymptotic to the ones of f (z) since

g(z) approaches a real constant as z → ∞.

• There cannot be a closed, bounded loop of zero level curve of �h = 0 if

�h has no singularities, i.e., is harmonic, inside the loop, since this would

imply that h is identically zero by the maximum modulus theorem.

Based on these observations, we determine that conditions (2.21) can be satis-

fied only in the following cases:

• When t = 0, there is exactly one branch of � f = 0 going to infinity. Thus,

at t = 0, there can be only one branch point. Three branches of �h = 0

will emanate from it, one going to infinity and two to the points z = µ

2

and z = −µ

2
. Thus there is a curve connecting these two points on which

�h = 0.

• When t > 0, there are exactly three branches of � f = 0 going to infinity.

This allows either one or three branch points, provided that in the case

µ < 2 no zero level curves of �h emanate from [0, T ]. In the case of one

branch point, there will be a branch of �h = 0 from infinity to infinity

in addition to the branch structure of t = 0. In the case of three simple

branch points, there will be a zero level curve of �h connecting µ

2
to −µ

2

that passes through all three points. Two of the three zero level curves

emanating from each of the three branch points will lie on on this curve,

while the remaining one will go to infinity. In the pure radiation case µ ≥
2, there cannot be more than three branch points, since this would require

more connections to infinity; thus the genus in the pure radiation case
cannot exceed 2. When µ < 2, connections to [0, T ] are possible, so the

question of a bound for the genus of the soliton case remains open at the

moment.

Motivated by the above considerations, we prefer to think in terms of contour

(2.27) γ + = γ̃ + ∪ γ +
con

with corresponding definitions for γ − and γ = γ + ∪ γ −, where γ +
con is a zero

level curve of �h that connects α4N with −µ

2
. Thus, γ + connects µ

2
to −µ

2
and

γ = γ + ∪ γ − is a closed curve. The conditions

�h(z) = 0 when z ∈ γ ,(2.28) {
left and right of γ +

m : �h(z) < 0,

across γ + \ γ +
m = γ +

c ∪ γ +
con: �h(z) changes sign,

(2.29)
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imply the earlier ones (2.25) and (2.26). Indeed, if the new conditions are satisfied,

γcon must have �h > 0 on its right, because this holds on the upper lip of R to the

left of z = µ

2
. Thus, γ∞ satisfying the earlier conditions can be defined as a small

deformation of (−∞,−µ

2
)∪γcon. We adopt the new conditions as our requirement.

2.6 Outline of Results on h and α

The construction of the functions g and h is outlined in Section 3. A key el-

ement that enters the expression for g and h and leads to the solution q0(x, t, ε)
of NLS is the radical R(z) = ∏4N+2

k=0

√
(z − αk) with branch cut γm and the corre-

sponding Riemann surface R(x, t). For each N , we derive a system of nonlinear

equations (3.5) and (3.9)

(2.30) F(α, x, t) = FN (α, x, t) = 0

for the 4N + 2 unknowns α = (α0, α1, . . . , α4N+1).

The evolution and degeneracy theorems (see below) are our main tools to keep

track of the time evolution of the Riemann surface R(x, t) associated with the

solution. The solution theorem describes sufficient conditions that allow us to re-

construct q0(x, t, ε) through R(x, t).

Prebreak

The main result here is the construction of the function h(z; x, t) (see Sec-

tion 4.2) that satisfies (2.21) with genus 0 (N = 0) when the (x, t) are in a

space-time region 0 ≤ t < t0(x) < ∞. System (2.30) has a single unknown,

α0(x, t) = α = a + ib, in the upper half-plane and reduces to a pair of real equa-

tions from which a and b are found. For all t > 0, there are two solution branches

of these equations. Exactly one of these connects smoothly to the initial (t = 0)

values of a = a(x, 0) = µ

2
tanh x and b = b(x, 0) = sech x . The connecting solu-

tion branch exists uniquely at all times for each x �= 0. Breaking for x �= 0 occurs

at t = t0(x) < ∞ because of a breakdown of the required sign structure. At x = 0,

t = 1
2(µ+2)

= t0(0), uniqueness is lost when the two branches yield the same α. In

Sections 4.5 and 4.6 we show that for 0 ≤ t < t0 there is a zero level curve of �h
in the upper half-plane connecting point µ

2
to point −µ

2
, passing through the point

α, and displaying the required sign structure (2.29). This is our contour γ +; see

Figure 2.5.

Breaking

Breaking occurs for a topological reason. For x > 0 fixed, and as time, increas-

ing from 0, reaches the value t = t0(x), the curve γ + comes into contact with a

second branch of �h = 0 at a point z0. Necessarily h′(z0) = 0; see Figure 2.6.

As t increases further, the four zero level curves of �h(z; x, t) = 0 emanating

from z0 as a result of the quadratic behavior of h at this point interchange con-

nections; a zero �h level curve connection between points µ

2
and −µ

2
ceases to

exist.
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FIGURE 2.5. Zero level curves of �h, prebreak.

−

+

+

+

+

+

+

+
+

+

+

− − −

−

−

−

−

−
−

−

−

−

− −

−

−
−

−

−

−µ/2 µ/2

α

−

−

−
−

−−

−

−

0α =α2 4

FIGURE 2.6. Zero level curves of �h, breaking point.

The breaking curve t = t0(x) is obtained in principle by eliminating z from

the system of the three real equations �h(z; x, t) = 0 and h′(z; x, t) = 0. We

have analytic formulae for the functions h(z, x, t) and h′(z, x, t), yet the above

elimination of z cannot be performed explicitly. We prove the existence of the

breaking curve t0(x) (see Section 5.1), and we calculate explicitly its asymptotic

behavior as x → ∞ and x → 0+ (see Section 5.3).

When the point (x, t) is on the breaking curve, the genus 0 solution breaks

down; the sign structure (2.29) on the part of the contour that connects α0 to −µ

2

is violated at the zero of h′, i.e., at z0. A degenerate genus 2 (N = 1) solution is

obtained by identifying the point of contact z0 of the two zero level curves of �h
with a double point z0 = α2 = α4. As described in Theorem 3.1 below, the function

h, as a degenerate genus 2 solution of the scalar RHP, is identical to function h as

a genus 0 solution of the scalar RHP. This extends the region of our solution to

t ≤ t0(x).

In the case x = 0, and only in this case, we have higher degeneracy at t0 =
1

2(µ+2)
and z0 = i

√
µ + 2. Then system (2.30) is satisfied with α0 = α2 = α4 = z0.

Postbreak Local Calculation: (t − t0) Small

As discussed above, we can solve (2.30) for genus 2 exactly on the breaking

curve. We now show that we can solve the system for N = 1 in a vicinity of the

breaking curve on either side of it (both pre- and postbreak). We face the difficulty

that the Jacobian ∂ F
∂α

contains all factors of type αk − αl and thus vanishes on the

breaking curve on which α2 = α4. To overcome this, we make a change of the
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FIGURE 2.7. Zero level curves of �h, postbreak.

variables α (see Section 6.2, a similar change of variable was made in [24]) so that

the new Jacobian is different from zero in a neighborhood of the breaking curve.

We then use the implicit function theorem to show the local solvability of (2.30)

near the breaking curve for the three unknowns α0, α2, and α4.

The sign of �h near the subcontour γ +
m,1, connecting α2 and α4, changes as t

crosses the value t = t0. This sign cannot satisfy (2.29) in the prebreak region,

for otherwise conditions (2.19) would be satisfied for N = 0 and N = 1 and we

would be able to construct two different asymptotic behaviors for NLS. Thus, this

sign satisfies (2.29) above the breaking curve (postbreak region), and our solution,

now of genus 2, extends locally in a region above the breaking curve. The topology

of zero level curves of �h in the postbreak region is shown in Figure 2.7.

Postbreak Global Calculation

In the prebreak region, α0 is found implicitly as the solution to some transcen-

dental equations. The leading asymptotic behavior of the solution of NLS in this

region is given in terms of the α0. For µ = 2 and µ = 0 expressions for α0 are

explicit (see (4.29)–(4.30)).

By the evolution theorem (Theorem 3.2), the existence of nondegenerate α for

some (x0, t0) implies the existence of a nondegenerate α in a neighborhood of

(x0, t0) (if all α2k are distinct, then the Jacobian matrix | ∂ F
∂α

| �= 0). Studying global

solvability in the postbreak region, i.e., solvability for all (or almost all) (x, t) in

that region, includes two crucial elements: (1) existence of a solution to (2.30)

for at least one point (x0, t0) with a nondegenerate α, and (2) control over the de-

generacy of α together with control over new breaks through collision of different

branches of the zero level curve �h = 0 and through intersection of γ with singu-

larities of f (z).
In this paper, we are able to establish the global postbreak solvability of (2.30)

for genus 2 (N = 1) for the solitonless case µ ≥ 2 (see Section 6.4) and to produce

the leading asymptotic behavior of the solution of NLS in this region in terms of

the α (see Sections 7 and 8). Global postbreak solvability of (2.30) for genus 2 is

achieved because we have control over the branches of the zero level curve �h = 0

(its branches can emanate only from the real axis and from infinity); we use this
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FIGURE 2.8. Contour 
(4). The letter d denotes contours with jump

matrix approaching I , whereas a c denote contours with jump matrix

approaching a constant limit.

to show that the genus does not increase from 2, and that the global solvability of

(2.30) implies that conditions (2.19) can be satisfied everywhere above the breaking

curve for N = 1. In the soliton (µ < 2) case, we can extend the solvability

of (2.30) and calculate the leading-order term q0(x, t, ε) of q(x, t, ε) above the

breaking curve as long as different branches of �h = 0 do not collide with each

other or with the segment [0, T ], i.e., as long as the genus is equal to 2. However,

we did not prove solvability for all positive t , i.e., global solvability, in this case.

2.7 The Riemann-Hilbert Problem P (4) and the Model Riemann-

Hilbert Problem P (mod)

Riemann-Hilbert Problem P (4)

Following the construction of the function g, we transform RHP P (3) to RHP

P (4) by performing the contour deformations of Figure 2.8.

• On each arc of the contour γ +
m , the left and right factors of (2.16) split off

on their own contours to the right and left, respectively, leaving us with

three contours, the middle one with the constant jump matrix of the middle

factor (
0 e− 2i

ε
W

−e
2i
ε

W 0

)
and the other two converging exponentially to the identity. The conver-

gence is uniform if a neighborhood of the endpoints is excluded. On the

arc (α0, ᾱ0), we make an extra deformation; the contour of constant jump

is moved to the left of the left contour whose jump matrix thus suffers a

conjugation with the constant jump matrix ( 0 1
−1 0 ) (recall W0 = 0), but re-

mains exponentially converging to the identity. Finally, the contour near µ

2

is a subset of the real axis: the lines emanating from µ

2
are shown slanted

only to describe the deformation; they lie exactly on the x-axis on some

neighborhood of µ

2
before leaving the real axis to connect to α0 or α1.
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FIGURE 2.9. Contour 
(mod) = 
 \ γ∞ = γ̃ .

• On each arc of the contour γ +
c one of the factors (2.17) with 1s on the

diagonal splits off on its own contour on the side where �h > 0, leaving

us with two contours, this one with a jump that converges to the identity,

and one with the constant jump(
e

2i�
ε 0

0 e− 2i�
ε

)
.

The convergence is again uniform if neighborhoods of the endpoints are

omitted.

• The arc γ∞ that connects α4N to −∞ has a jump matrix that converges

exponentially to the identity matrix uniformly outside any neighborhood

of α4N .

The Model Riemann-Hilbert Problem P (mod): Genus 2N

In Section 7 we derive an explicit formula for the solution of the model RHP

obtained from P (4) when the jump matrices that converge to the identity as ε → 0

are neglected (replaced with the identity). We have

(2.31) RHP P (mod) : m(mod)
+ = m(mod)

− V (mod) when z ∈ 
(mod)

on the contour 
(mod) = γ̃ = 
 \ γ∞, which has the usual symmetry (see Fig-

ure 2.9). The piecewise constant jump matrix

(2.32) V (mod) =



(
0 e− 2i

ε
W

−e
2i
ε

W 0

)
when z ∈ γ +

m(
e

2i
ε

� 0

0 e− 2i
ε

�

)
when z ∈ 
(mod)+ \ γ +

m .

is the asymptotic limit of V (4) as ε → 0.

The introduction of g in (2.13) changes the normalization of m(3), m(4), and

m(mod) to

(2.33) m(3), m(4), m(mod) →
(

e
2i
ε

g(∞) 0

0 e− 2i
ε

g(∞)

)
as z → ∞ .
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FIGURE 2.10. Contour 
(app).

The model RHP is solved by an explicit formula for any genus in Section 7.

2.8 Solution of NLS with Error Estimate

We derive an error estimate that proves that replacing P (4) with the model prob-

lem produces the required solution q0(x, t, ε) of NLS. We treat the case of genus 0

(N = 0); the same derivation applies to the case of higher genus. The jump matrix

of the model problem is the limit of the jump matrix V (4) as ε → 0. Ideally, we

would like to set m(4) = m(err)m(mod) so it would peel off the solution m(mod) of the

model problem and leave us with an RHP for some m(err); it would represent our

error, for which we would seek an estimate. In reality, the RHP for m(err) is then

too singular at the branch points α and at µ

2
. We note that near these points there is

no uniform convergence V (4) → I as ε → 0. To overcome this difficulty, we treat

these points specially. Instead of peeling off m(mod), we peel off a modified matrix

m(app) defined in the following way:

(1) m(app)(z) equals the solution of the model problem m(mod)(z) outside three

circles, rα0
, rᾱ0

, and rµ/2, centered at the points α0, ᾱ0, and µ

2
, respectively,

with radii 2δ, where δ is positive and small but independent of ε; see Fig-

ure 2.10.

(2) m(app)(z) is a parametrix of V (4) inside the circles of rα0
, rᾱ0

, and |z − µ

2
| =

δ; i.e., it satisfies the jump conditions of the RHP P (4) inside these circles

exactly.

(3) The jump of m(app)(z) across circles rα0
, rᾱ0

, and rµ/2, i.e., across the real

intervals δ < |z − µ

2
| < 2δ, must be of order I + O(ε) uniformly.

If the above-mentioned matrix m(app)(z) exists, it should satisfy the RHP

P (app) = (V (app), 
(app)), where 
(app) = 
(mod), V (app) = V (mod) outside the

three circles r , and 
(app) = 
(4) and V (app) = V (4) inside the circles rα0
, rᾱ0

, and

|z − µ

2
| = δ; see Figure 2.10.
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FIGURE 2.11. Contour 
(err).

Peeling off m(app) through m(4) = m(err)m(app) corresponds to the reduction of

the RHP P (4) to the RHP P (err) = (V (err), 
(err)), where 
(err) is the union of

all solid lines of Figure 2.11. On the circles rα0
, rᾱ0

, and rµ/2 and inside rµ/2 with

|z− µ

2
| > δ, we have V (err) = I +O(ε). On the rest of 
(err) the jump V (err) = V (4).

Parametrices for m(app) in the neighborhood of the points α0 and ᾱ0 satisfy-

ing the above conditions have been constructed through the use of Airy functions;

see [10]. We do not repeat this analysis here. We defer the construction of the

parametrix m(app)(z) around the point µ

2
to Section 9 and proceed assuming this

construction has been completed.

The solution of our initial value problem for NLS is

(2.34) q(x, t, ε) = −2 lim
z→∞

z(m(2)(z) − I )12 ,

the subscripts indicating the (12) matrix entry. Putting together previous reductions

of the RHP P (2), we have for |z| large enough

(2.35) m(2)(z) = m(4)(z)e− 2i
ε

g(z)σ3 = m(err)(z)m(mod)e− 2i
ε

g(z)σ3 ≡ m(err)(z)M(z) ,

where M(z) = m(mod)e− 2i
ε

g(z)σ3 . An easy calculation gives

(2.36) q(x, t, ε) = −2 lim
z→∞

z(M(z) − I )12 − 2 lim
z→∞

z(m(err)(z) − I )12 ,

where the first term is our approximation q0(x, t, ε) of the solution q(x, t, ε) to

(1.1) presented in the main theorem. The estimate for the second term,

(2.37) m(err)
1 ≡ lim

z→∞
z(m(err)(z) − I ) = O(ε)

uniformly in x and t on compact sets away from breaking curves, is proven in Sec-

tion 9.

Remark. A uniform estimate in the neighborhood of the breaking curve is possible

that gives an error of order O(ε1/2) but is omitted from this study.
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3 Construction of the Functions g and h

Remark (Generality of the Initial Data). The procedure in this section applies to

any f (z) that is analytic and Schwarz reflection invariant along γ̃ . For the sake of

concrete calculation and precision in stating results, our exposition as well as the

results assume that f (z) is given by (2.10).

3.1 Formulae for g and h

The equalities in (2.19) and their differentiated version, together with the re-

quirement that g(z) be analytic at ∞, pose a pair of scalar additive RHPs, one for

g(z) and the second one for g′(z) on the still unknown contour γ̃ :
g+ + g− = f + W0 = f on γ +

m,0

g+ + g− = f + Wi on γ +
m,i

g+ − g− = �i on γ +
c,i

and


g′

+ + g′
− = f ′ on γ +

m,0

g′
+ + g′

− = f ′ on γ +
m,i

g′
+ − g′

− = 0 on γ +
c,i ,

(3.1)

i = 1, 2, . . . , N .

We recall the normalization W0 = 0. Our construction of a function g(z) that

satisfies conditions (2.19) begins with the differentiated problem on an arbitrary,

oriented, non-self-intersecting Schwarz-reflection-invariant contour

(3.2) γ̃ =
(
α4N+1, α4N−1, . . . , α1,

µ

2
, α0, α2, . . . , α4N

)
,

as in Figure 2.3, where the even-indexed α2k are distinct points with �α2k > 0

and α2k+1 = ᾱ2k , k = 0, 1, . . . , 2N . The contour γ̃ intersects R only at the point
µ

2
; we assume that it does not pass through the singularities of f (z). In the case

when µ < 2, that means that γ̃ does not pass through the segment [−T, T ] on the

imaginary axis, which is a branch cut of f (z).
One easily verifies that the jump conditions (3.1) of the differentiated problem

are satisfied by the expression (see [19, 41])

(3.3) g′(z) = R(z)

2π i

∫
γm

f ′(ζ )

(ζ − z)R+(ζ )
dζ = R(z)

4π i

∮
γ̂

f ′(ζ )

(ζ − z)R(ζ )
dζ ,

where R(z) = ∏4N+2
k=0

√
(z − αk), and R±(z) denotes the value of R on the left

and right side of the branch cut γm ; the sign of R is determined by its behavior at

infinity, R(z) ∼ −z2N+1 as z → ∞. The contour γ̂ in the second expression is the

union of a loop that starts at z = µ

2
− 0, encircles the contour γ̃ + clockwise, and

closes at z = µ

2
+ 0 together with its complex conjugate, also oriented clockwise.

We refer to γ̂ as the figure 8; see Figure 3.1. The point z is outside the figure 8.

By an application of residue calculus, we find that the function h′ = 2g′ − f ′

is given by the formula

(3.4) h′(z) = R(z)

2π i

∮
γ̂

f ′(ζ )

(ζ − z)R(ζ )
dζ ,
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FIGURE 3.1. Contour γ̂ .

where now z is inside the figure 8. f ′ is Schwarz reflection invariant; hence g′ is

real on R.

The requirement that g(z) be analytic at ∞ implies that g′(z) ∼ O(z−2) as

z → ∞; the latter is equivalent to the 2N + 2 moment conditions

(3.5) moment condition Mk :

∮
γ̂

ζ k f ′(ζ )

R+(ζ )
dζ = 0 , k = 0, 1, . . . , 2N + 1,

that we obtain by expanding (ζ − z)−1) in the integral in powers of z−1.

Assuming that the points α are chosen so that the moment conditions and hence

the relation g′(z) ∼ O(z−2) hold, the primitive function

(3.6) g(z) =
∫ z

∞
g′(z)dz + g(∞)

is analytic, single valued, and Schwarz reflection invariant in C̄ \ γ̃ ; hence it is real

on R \ {µ

2
}. The constant of integration g(∞) is chosen so that

(3.7) at z = µ

2
, g+ + g− − f = W0 = 0 , equivalently, h+ + h− = 0 ,

is satisfied, guaranteeing that the first jump relation (3.1) holds. The constant jumps

of h, �i , and Wi satisfy the relations

(3.8)



�i+1 − �i = 1
2
(h+ − h−)|α4i

α4i−2
= 1

2

∫
γ +

m,i
h′

+(ζ ) − h′
−(ζ )dζ

= 1
2

∮
γ̂ +

m,i
h′(ζ )dζ, �N+1 = 0,

Wi − Wi−1 = 1
2
(h+ + h−)|α4i−2

α4i−4 = 1
2

∫
γ +

c,i
h′

+(ζ ) + h′
−(ζ )dζ

= 1
2

∮
γ̂ +

c,i
h′(ζ )dζ, W0 = 0,
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FIGURE 3.2. Contour γ̂ .

where i = 1, 2, . . . , N . The contour γ̂ ±
m,i encircles the arc γ ±

m,i clockwise; the

contour γ̂ ±
c,i is a loop consisting of the union of two oppositely oriented arcs as in

Figure 3.2, where γ̂m,i = γ̂ +
m,i ∪ γ̂ −

m,i and γ̂c,i = γ̂ +
c,i ∪ γ̂ −

c,i . (Equivalently, γ̂ ±
c,i may

be taken to be a cycle that closes through the lower sheet of the Riemann surface

of R(z).) We will also use the contour γ̂m,0 that encircles γm,0 clockwise and has

the shape of the figure 8 with a point of self-contact at µ

2
. We make the following

important observations:

(1) � and W are calculated in terms of h′, that is, in terms of the α.

(2) The required reality of � and W is equivalent to the following 2N real

integral conditions:

(3.9)

{
Im,i : � ∮

γ̂ +
m,i

h′(ζ )dζ = 0

Ic,i : � ∮
γ̂ +

c,i
h′(ζ )dζ = 0,

equivalently

{∮
γ̂m,i

h′(ζ )dζ = 0∮
γ̂c,i

h′(ζ )dζ = 0,

where i = 1, 2, . . . , N .

(3) The reality of � and W is equivalent to the relations �h±(α2k) = 0 and

hence to the relations �h(α2k) = 0 for all k = 0, 1, . . . , N .

The MI Conditions and the Genus

The moment conditions (3.5) and the integral conditions (3.9) compose the sys-

tem F(α, x, t) = FN (α, x, t) = 0 alluded to earlier, from which the branch points

α = α(x, t) are calculated. We label this system of equations as the MI conditions.

Solving the system of the MI conditions is a major part of this work. Another ma-

jor part is the construction (or proof of existence) of a branch γ + of �h(z) = 0 that

starts from z = µ

2
, passes through all these points, and connects to −µ

2
in a way

that the sign structure (2.29) is observed. Possibly, the MI conditions are solvable
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for more than one value of the genus. The correct genus is decided by the existence

of the connection γ + described above.

Behavior of h(z) near the Branch Points; Degeneracy

Expression (3.4) for h′ indicates that h′(z) equals (z − α2k)
1/2 × an analytic

function when z is near α2k ; thus, near α2k , and for α that satisfy the MI conditions,

we have

(3.10) h±(z) = (C2k)±+(z−α2k)
3/2 ×analytic function, where �(C2k)± = 0 .

Here C2k± are constants of integration that can be easily calculated in terms of W
and �. Let z = z0 be a zero of the integral in (3.4) that equals h′(z0)/R(z0). If z0

is on the contour γ , the following theorem allows us to include it and its complex

conjugate in the chain of the αj ’s. If z0 is not a branch point, then it is introduced

as a degenerate one with multiplicity 2. The multiplicity of αj is understood as

its multiplicity in the polynomial under the radical of R. If z0 is a branch point,

then including it raises the multiplicity of the branch point by 2. To maintain the

symmetry we have to treat point z̄0 similarly.

THEOREM 3.1 (Degeneracy Theorem)

(1) Suppose

(3.11)
h′(z0)

R(z0)
= 0

(
by symmetry, also

h′(z̄0)

R(z̄0)
= 0

)
for some point z0 ∈ γ . Then we have the following:

(a) Replacing R(z) in (3.4) with R̃ = R(z)(z − z0)(z − z̄0) (the multiplici-
ties of z0 and z̄0 are thus increased by 2) does not change the functions
h′(z) and h(z), i.e., h′(z; R̃) = h′(z; R) and h(z; R̃) = h(z; R).

(b) If the original α satisfy the MI conditions with genus 2N, then the
new α, corresponding to R̃, also satisfy the MI conditions with genus
2(N + 1).

(2) Conversely, if a degenerate α = (α0, α2, . . . α4N+1) with α2k = α2k+2 = z0

satisfies the MI conditions with genus 2N, then the α that is obtained by
removing the degenerate pair and its complex conjugate satisfies the MI
conditions for genus 2(N − 1). Furthermore, after the removal, h′/R = 0

at the site z0 of the removed pair.

PROOF: We simplify the notation by writing z0 for z0 in the proof. The proof

of the first statement is based on the identity

(3.12)
1

(ζ − z)(ζ − z0)(ζ − z̄0)
= c1

ζ − z
+ c2

ζ − z0

+ c3

ζ − z̄0

,
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where

(3.13)

c1 = 1

(z − z0)(z − z̄0)
, c2 = 1

(z0 − z)(z0 − z̄0)
,

c3 = −1

(z̄0 − z)(z0 − z̄0)
.

Inserting the expression for R̃ in formula (3.4) for h′(z; R̃) and utilizing the above

identity, we obtain

2π ih′(z; R̃) = R(z)

∫
γ̂

f ′(ζ )

(ζ − z)R(ζ )
dζ

− R(z)(z − z̄0)

z0 − z̄0

∫
γ̂

f ′(ζ )

(ζ − z0)R(ζ )
dζ

+ R(z)(z − z0)

z0 − z̄0

∫
γ̂

f ′(ζ )

(ζ − z̄0)R(ζ )
dζ

= 2π ih′(z; R) .

(3.14)

The last equality holds because the second and third integrals equal h′(z0)/R(z0)

and h′(z̄0)/R(z̄0), respectively, and vanish by hypothesis. The equality h(z; R̃) =
h(z; R) follows, since both satisfy (3.7).

The second statement on the MI conditions is obvious; h does not change; thus,

the behavior at infinity and the jumps remain the same.

In the third statement, removing the pair removes a zero from R; thus h′/R = 0

at the site of the removed pairs. The second and third integrals in (3.14) vanish. �

If the new R = R̃ still gives h′(z0)/R(z0) = 0, we may again redefine R by

multiplying by the factor (z − z0)(z − z̄0) one more time. We may proceed in this

way until h′(z0)/R(z0) �= 0 for all branch points.

Our strategy is to construct the solution of the system MI and the curve γ at

t = 0 and let the solution evolve.

THEOREM 3.2 (Evolution Theorem) Let α = (α0, α2, α4, . . . , α4N ) with distinct
α2k be a solution of (2.30) with genus 2N at some point (x0, t0). Then

• the solution α(x, t) can be continued uniquely with the same genus into a
neighborhood of (x0, t0), and α(x, t) is a smooth function of x and t,

• W and � are smooth functions of x and t, and
• if the function h(z) = h(z; α(x, t), W (x, t),�(x, t)) satisfies conditions

(2.29) at (x0, t0), then it also satisfies these conditions in a neighborhood
of (x0, t0).

The proof is based on the implicit function theorem and the following expres-

sion for the Jacobian ∂ F
∂α

; see Section 6.1.
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THEOREM 3.3 (Jacobian) The Jacobian | ∂ F
∂α

| is given by

(3.15)

∣∣∣∣∂ F

∂α

∣∣∣∣ =
2N∏
j=0

∣∣∣∣ h′(α2 j )

2R(α2 j )

∣∣∣∣2∏
j<l

(αl − αj )

∫
γ̂m,1

∫
γ̂c,1

· · ·
∫

γ̂m,N

∫
γ̂c,N

2N∏
j<l

(zj − zl)

2N∏
k=1

dzk

R(zk)
,

where h′(z) is defined by (3.4) and the integral in (3.15) is equal to

(3.16) det


∫
γ̂m,1

dz1

R(z1)

∫
γ̂c,1

dz2

R(z2)

∫
γ̂m,2

dz3

R(z3)
· · · ∫

γ̂c,N

dz2N
R(z2N )∫

γ̂m,1

z1dz1

R(z1)

∫
γ̂c,1

z2dz2

R(z2)

∫
γ̂m,2

z3dz3

R(z3)
· · · ∫

γ̂c,N

z2N dz2N
R(z2N )

...
...

...
...

...∫
γ̂m,1

z2N−1
1 dz1

R(z1)

∫
γ̂c,1

z2N−1
2 dz2

R(z2)

∫
γ̂m,2

z2N−1
3 dz3

R(z3)
· · · ∫

γ̂c,N

z2N−1
2N dz2N

R(z2N )

 .

According to Corollary 6.1, the Jacobian | ∂ F
∂α

| �= 0 as long as all αj are distinct

and h′(z)
R(z) |z−αj �= 0, j = 0, 1, . . . , 4N + 1. Then the evolution theorem implies that

conditions (2.29) for the given N hold in the process of any (x, t) evolution as long

as

• all αj stay distinct,

• the ratio h′(z)/R(z) �= 0 for any z ∈ γ , and

• the contour γ stays away from singularities of f (z) in C.

Breaking occurs at some (x, t) at which one of the above conditions is violated.

Generically, it occurs on curves in the (x, t)–plane that we call breaking curves,

across which there is a jump in the genus 2N . A set of α satisfying the first two of

the above conditions is called nondegenerate. Degeneracy can occur as the result of

• a collision between some αj and a singular point of f (z), including points

on R and ∞ (note that in the latter two cases, αj also collides with ᾱj ),

• a collision between different α2k in the upper half-plane (and the corre-

sponding complex conjugates in the lower half-plane), and

• a collision between the contour γ , which is a zero level curve of �h(z) (see

(2.29)), (2.28), and any other branch of zero level curve of �h(z).

Typically, a collision of some neighboring (along γ ) α2k in the upper half-plane

leads to the decrease of the genus, whereas collision of γ with another branch of

the zero level curve of �h(z) leads to the increase of the genus in accordance with

the degeneracy theorem above. In a sense, these two events can be viewed as time

reverses of each other and can be associated with the disappearance of a pair (or

several pairs) of colliding α’s and the appearance of a new pair (or several pairs) of

α’s at a point z0 ∈ γ , such that h′(z0)/R(z0) = 0, i.e., at the point of collision of

branches of �h(z) = 0.

In the case that we treat, the genus 2N = 2, and we have α0 �= α2 = α4. Note

that the Jacobian | ∂ F
∂α

| becomes zero if not all points in α are distinct. To establish
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the evolution through a breaking curve, we will use a reparametrization of the α

that leads to a nonzero Jacobian.

When there are no degeneracies, the function g(z) may be calculated directly

through the formula

(3.17) g(z) = R(z)

2π i

(∫
γm

f (ζ ) + W

(ζ − z)R+(ζ )
dζ +

∫
γc

�

(ζ − z)R+(ζ )
dζ

)

that expresses the unique L loc
2 solution of the first problem (3.1) that is analytic at

infinity. Of course, this must agree with the definition (3.6) of g(z) as the primitive

of g′(z). Expressing the integrals over the main and complementary arcs (3.17) in

terms of the above loop integrals (see Figure 3.2), we obtain

g(z) = R(z)

4π i

[ ∮
γ̂

f (ζ )

(ζ − z)R(ζ )
dζ

+
N∑

i=1

( ∮
γ̂m,i

Wi

(ζ − z)R(ζ )
dζ +

∮
γ̂c,i

�i

(ζ − z)R(ζ )

)
dζ

]
,

(3.18)

where the paths of integration γ̂ , γ̂m,i , and γ̂c,i are contractible to their correspond-

ing arcs without passing through z; the integrand is nonsingular for every such z.

By deforming γ̂ so that now z is inside the loop γ̂ and still outside the loops γ̂m,i

and γ̂c,i , we obtain

h(z) = R(z)

2π i

[ ∮
γ̂

f (ζ )

(ζ − z)R(ζ )
dζ

+
N∑

i=1

( ∮
γ̂m,i

Wi

(ζ − z)R(ζ )
dζ +

∮
γ̂c,i

�i

(ζ − z)R(ζ )

)
dζ

]
.

(3.19)

To obtain a workable expression for the first integral in these formulae, we deform

the figure 8 contour γ̂ as in Figure 6.3.

Note that the formula (3.18) for g allows degeneracies in which main and com-

plementary arcs collapse to points, leading to α with points that are not distinct.

Indeed:

• If the complementary interval γ +
c,k collapses to a point, then (3.8) yields

Wk = Wk−1, the common value factors out of two terms in (3.18), and

the contours surrounding the two adjacent main arcs in the upper half-

plane can be written as one contour surrounding both. No contour in the

expression of g(z) passes through the point of the collapsed interval, and

the collapsing produces no singularity in the formula.
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• Similarly, if a main arc γ +
m,k collapses to a point, then �k = �k+1, the com-

mon value factors from two terms in (3.18), and the contours correspond-

ing to the two adjacent complementary arcs can be replaced by a single

one. No contour crosses to the lower sheet at the point of the collapsed

main arc, and the collapse occurs without the appearance of a singularity

in (3.18).

4 Prebreak Evolution

In this section we will obtain the leading-order term of q0(x, t, ε) in the genus 0

region, i.e., in the region between the axis t = 0 and the breaking curve t0(x) of

the (x, t)–plane; see Figure 1.2. We focus on finding the function g(z) satisfying

the conditions (2.19) for N = 0. In the case N = 0 the system (2.30) is solved for

all x ≥ 0, and solutions are found explicitly. That allows us to construct g and h
in closed form. We then show that for a given x , the topology of the level curve

�h = 0 is right (i.e., all conditions (2.19) are satisfied) for all t ∈ [0, t0(x)).

4.1 Equation for the Branch Point α0 = α

In the case N = 0, equations (2.30) consist of two moment conditions

(4.1) g′(∞) = 0 and zg′(z)
∣∣
z=∞ = 0

to determine the branch point α = a + ib. In the integral form, these conditions

become

(4.2)

∫
γm

f ′(ζ )

R+(ζ )
dζ = 0 ,

∫
γm

ζ f ′(ζ )

R+(ζ )
dζ = 0 ,

where

f ′(z, ε) = − iπ

2
− ln

(
µ

2
− z

)
+ 1

2
ln(z2 − T 2) − x − 4t z ,

z f ′(z, ε) = − iπ

2
z − z ln

(
µ

2
− z

)
+ z

2
ln(z2 − T 2) − xz − 4t z2 .

(4.3)

The aim of this subsection is to show that for any given x ≥ 0 and t > 0, there

exist two different solutions αj (x, t) = aj (x, t) + ibj (x, t), j = 1, 2, satisfying

(4.2). There is one special case α1(0, t0) = α2(0, t0) = ib0, where t0 = 1
2(µ+2)

and

b0 = √
µ + 2. For a fixed x , the continuous curve α(x, t) = a(x, t) + ib(x, t) is

referred to as a trajectory of α on C, whereas for a fixed t the continuous curve

α(x, t) is called an isochronic curve on C.

THEOREM 4.1

(i) System (4.2) can be written as

(4.4)

{√
(a − T )2 + b2 +

√
(a + T )2 + b2 = µ + 4tb2[

a − T +
√

(a − T )2 + b2
][

a + T +
√

(a + T )2 + b2
] = b2e2(x+4ta).
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In the particular case µ = 2, the system (4.4) becomes

(4.5)

{√
a2 + b2 = 1 + 2tb2

a + √
a2 + b2 = be(x+4ta).

(ii) For any x ≥ 0, t > 0, there exist two different solutions αj (x, t), j = 1, 2,

to (4.4) such that a1(x, t) ≥ 0 and a2(x, t) ≤ 0. The only exception is the point
(0, t0), where α1(0, t0) = α2(0, t0) = ib0. Here t0 = 1

2(µ+2)
and b0 = √

µ + 2. In
the limit t → 0, the point α2 → ∞, whereas α1(x, 0) = µ

2
tanh x + i sech x. The

only cases α1,2 that are purely imaginary are the cases x = 0, 0 < t ≤ t0.

PROOF: The proof of part (i) is given in Appendix C. To prove (ii), we modify

system (4.4) by introducing the auxiliary variables

(4.6) u = 4ta + x , sinh p = a − T

b
, sinh q = a + T

b
.

Then, system (4.4) becomes

(4.7)

{
p + q = 2u

cosh p + cosh q = µ

b + 4tb,

which can be immediately transformed into

(4.8)

{
p + q = 2u

cosh 1
2
(p − q) = µ+4tb2

2b cosh u .

Solving now (4.6) for a and T , we get

(4.9) a = 1

2
(µ + 4tb2) tanh u

and

(4.10) T = b cosh u

√
cosh2 1

2
(p − q) − 1 =

√
a2 coth2 u − b2 cosh2 u .

Thus, we get the system

(4.11)


u = 4ta + x

a = 1
2
(µ + 4tb2) tanh u

b2 = a2

sinh2 u
− T 2

cosh2 u
.

In the particular case t = 0, the system (4.11) yields u = x , a = µ

2
tanh x , and b =

sech x , so that the time-zero isochronic curve is the arc of the ellipse connecting

the points µ

2
and i in the first quadrant; see Figure 4.3.

Assume now that a(x, t) = 0. Then, according to (4.11), x = u = 0. Substi-

tuting a = 0 into the first equation in (4.4), we get the biquadratic equation

(4.12) b2 + T 2 =
(µ

2
+ 2tb2

)2

,
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and, subsequently,

(4.13) b2 = 1 − 2µt ±
√

(1 − 2µt)2 − 16t2

8t2
.

At the moment t = 0, the negative branch of (4.13) yields b1 = 1, whereas the

positive branch yields b2 = ∞. As t increases from 0, the (positive) values of b1,2

increase or decrease, respectively, according to (4.13), until t reaches the critical

value t0 = 1
2(µ+2)

. At this point b1 = b2 = b0 = √
µ + 2. For t > t0, the dis-

criminant in (4.13) becomes negative, so that our assumption a(0, t) = 0 becomes

invalid. (It will be shown later that this is the break point for x = 0.)

Let us now assume that either a < 0 or a > 0. Then the variable u �= 0 and has

the same sign as a. If a > 0, then the first equation in (4.11) implies u ≥ x . The

corresponding requirement for u < 0 will be specified below. Such values of u are

called admissible. We want to show that any pair of x ≥ 0 and of admissible u
uniquely determines t and, thus, according to (4.11), uniquely determines a and b.

Solving the first equation in (4.11) for a and eliminating b from the second and

third equations, we obtain the quadratic equation for t

(4.14) 16T 2t2 tanh2 u − 4µt sinh2 u + (u − x)[sinh 2u − (u − x)] = 0 ,

which has the solution

(4.15) t =
µ

2
sinh 2u ±

√
(

µ

2
sinh 2u)2 − 4T 2(u − x)[sinh 2u − (u − x)]

8T 2 tanh u
.

Let us first show that the discriminant

D(u) =
(µ

2
sinh 2u

)2

− 4T 2(u − x)[sinh 2u − (u − x)] ≥ 0 for all u ∈ R.

Indeed, D(x) > 0. For any u �= x there exists some k ∈ R such that sinh 2u =
k(u − x). Substituting this value into D(u), we obtain after some algebra that

(4.16) D(u) = µ2(u − x)2

4

[(
k − 2 + 8

µ2

)2

+ 16

µ2

(
1 − 4

µ2

)]
> 0

if µ > 2. In the case µ < 2 it is clear that D(u) > 0 if u ≥ x or u ≤ u0, where

the value u0 < 0 is determined by sinh 2u0 = u0 − x ; see Figure 4.1. In the case

µ = 2 equation (4.14) is linear in t .
Let us now show that conditions t ≥ 0 and b2 ≥ 0 require the negative branch

of (4.15) when u ≥ x and the positive branch when u < 0. If µ < 2, this

conclusion follows immediately from (4.15). So, let us consider µ > 2. If u < 0,

the condition t ≥ 0 requires u ≤ u0. Indeed, the right-hand side of the third

equation (4.11) is nonnegative. Substituting there a = u−x
4t , we obtain after some

algebra 16T 2ξ 2 ≤ (u − x)2, where ξ = t tanh u. Combining this inequality with

(4.14) yields

(4.17) 4µt sinh2 u ≤ (u − x) sinh 2u .
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FIGURE 4.1. Determination of u0.

In the case u ≥ x the latter inequality is reduced to

(4.18) 2µξ ≤ (u − x) .

Substituting t from (4.15) into (4.18), we obtain

(4.19) ± µ

√(µ

2
sinh 2u

)2

− 4T 2(u − x)[sinh 2u − (u − x)] ≤

− 1

2
µ2 sinh 2u + 4T 2(u − x) .

It is easy to see that the right-hand side of (4.19) is negative, so that the positive

branch in (4.15) cannot be a solution. Inequality (4.19) with the negative square

root reduces to the obvious

(4.20) 16(u − x)2 ≥ 0 .

If u ≥ x , it is also easy to see that t ≥ 0.

In the case u < 0, inequality (4.17) becomes

(4.21) 2µξ ≥ (u − x) ,

so that inequality (4.19) changes its sign to the opposite. It is now clear that the

choice of the negative root in (4.19) will lead to the inequality opposite to (4.20),

which is false. The choice of the positive root needs to be justified only in the case

− 1
2
µ2 sinh 2u + 4T 2(u − x) > 0. But in this case we again arrive at the obvious

(4.20). Thus, we need to choose the positive branch of (4.14) if u < 0. In this case,
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FIGURE 4.2. Graph t (u).

the condition t ≥ 0 leads to the requirement u ≤ u0. Therefore, any value of u ≥ x
or u ≤ u0 is admissible. Thus, we have established the uniqueness of t = t (u) for

any fixed x ≥ 0 and any admissible u.

To complete the proof, it only remains to show that for any given x > 0, t > 0,

or x = 0, t > t0, there exist exactly two corresponding values of u, one positive

and one negative; see Figure 4.2. Equations (4.11) and (4.14) show immediately

that t (x) = t (u0) = 0 and t → ∞ as u → ±∞. Thus, it remains to show that

u dt
du > 0 for any admissible u.

To this end, let us rewrite (4.14) as

(4.22) 16T 2ξ 2 − 2µξ sinh 2u + (u − x)[sinh 2u − (u − x)] = 0 ,

where ξ = t tanh u. Using implicit differentiation, we obtain

(4.23)
dξ

du
= 4µξ cosh 2u − sinh 2u − 2(u − x)[cosh 2u − 1]

32T 2ξ − 2µ sinh 2u
.

Taking into account dξ

du = dt
du tanh u + 2ξ

sinh 2u and (4.22), we obtain after some

algebra

(4.24) 4 sinh2 u
dt

du
=
4[2µξ − (u − x)] sinh2 u sinh 2u − [sinh 2u − 2(u − x)]2

16T 2ξ − µ sinh 2u
.

Note that the numerator is always less than or equal to 0, according to (4.18) and

(4.21), but the denominator is

±2

√(µ

2
sinh 2u

)2

− 4T 2(u − x)[sinh 2u − (u − x)] ,
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according to (4.15). Therefore, u dt
du > 0 is proven for all admissible u. The proof

is completed. �

It is clear that at t = 0 we should choose α = α1 to match our initial data (1.2);

see Section 4.4 for details. Thus, we must choose α = α1 for the entire genus 0

region.

Note that for a fixed x ≥ 0 the positive value of u monotonically increases

with t , whereas the negative value of u is monotonically decreasing (if x = 0 it is

required that t ≥ t0). In a sense, u can be considered as a new “time” for the fixed x .

Given a pair (x, t) (we assume t > t0 if x = 0), the corresponding values of (a, b)

can be considered, according to (4.11), as the intersection of the two hyperbolas in

the (a, b)–plane given by

(4.25)

{
2a2 coth u − µa − (u − x)b2 = 0

a2

sinh2 u
− b2 = T 2

cosh2 u
.

These equations yield

(4.26) [sinh 2u − (u − x)]a2 − µa sinh2 u + (u − x) tanh2 uT 2 = 0 ,

so that

a = µ sinh2 u + Q

2[sinh 2u − (u − x)]

= µ sinh2 u +
√

(µ sinh2 u)2 − 4T 2(u − x)[sinh 2u − (u − x)] tanh2 u

2[sinh 2u − (u − x)]

(4.27)

and

(4.28) b =

√
2(1 − T 2) sinh2 u + 2T 2(u − x) tanh u + µ

2
Q

sinh 2u − (u − x)

are the positive solutions to (4.4) (the corresponding u is positive). Equations

(4.27)–(4.28) give explicit formulae for α1(x, t) in terms of x and u. The ex-

pressions for α2(x, t) require the choice of negative u and different branches of the

square roots.

In the particular case T = 0 (i.e., µ = 2), expressions

(4.29)

a = 2 sinh2 u

sinh 2u − (u − x)
, b = 2 sinh u

sinh 2u − (u − x)
,

t = (u − x)[sinh 2u − (u − x)]
8 sinh2 u

,
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for a, b, and t in terms of x and u follow from (4.14), (4.25), and (4.26). In the

particular case µ = 0, the corresponding expressions are

(4.30)
a2 = (u − x) tanh2 u

sinh 2u − (u − x)
, b2 = 2 tanh u

sinh 2u − (u − x)
,

t = 1

4

√
(u − x)[sinh 2u − (u − x)] coth u .

COROLLARY 4.2 The limit limt→∞ α1(x, t) = µ

2
. The function α1(x, t) yields a

one-to-one correspondence between the first quadrant x ≥ 0, t ≥ 0, and the region
U bounded between the curves α1(x, 0) and α1(0, t); the curves are included. The
corresponding result is also true for α2(x, t).

PROOF: Equation (4.14) shows that t → ∞ implies u → ∞. Then the asymp-

totic of α1(x, t) follows from (4.25) and (4.26). For any z ∈ U , the corresponding

values of x and t are uniquely determined by (4.4). The easiest way to show the

one-to-one correspondence between U and x, t ≥ 0, is to consider the differen-

tial equations αx = −F−1
α Fx and αt = −F−1

α Ft , obtained from equation (2.30):

F(α, x, t) = 0. As will be shown in Section 6.3, these differential equations are

autonomous (in fact, their right-hand sides depend only on α), and the only singu-

larity they have in U is i
√

µ + 2. Since

• the isochronic curve α(x, 0) contains the set of initial values for all x ≥ 0

for the equation αx = −F−1
α Fx and trajectories directed into U ,

• trajectories α(x, t) with different x do not intersect, and

• b(x, t) > 0 for all finite nonnegative x and t ,

hence all trajectories α(x, t) lie in U ; see Figure 4.3. Thus, according to the theo-

rem, for any pair of nonnegative (x, t) there exists z ∈ U such that α1(x, t) = z.

The proof is completed. �

Notice that the system (4.11) is invariant under the transformation x �→ −x ,

a �→ −a, b �→ b, and u �→ −u.

4.2 Calculation of g

In the case of N = 0, the first RHP (3.1) can be written as

(4.31) g+ + g− = f , �(g+ − g−) = 0 , on γm ,

where γm is an unknown, simple, oriented, and symmetrical contour passing

through the points ᾱ, µ

2
, and α, and g is a function, analytic everywhere in C̄ \ γm .

The analyticity of f implies that the analytic function g(z) depends only on the

endpoints of γm , but not on γm itself.

Let R(z) = √
(z − α)(z − α), and denote the Cauchy integral operator

(4.32) Cγm [ f ](z) = 1

2π i

∫
γm

f (ζ )

(ζ − z)
dζ , z /∈ γm .
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FIGURE 4.3. The trajectories and isochrones of α1(x, t), t0 = 1
2
(µ + 2).

Our choice of the branch of R(z) is such that R(z) → −z as z → ∞.

For z ∈ γm , let C±
γm

define the positive (negative) limit of Cγm [ f ](ζ ) as ζ → z
from the positive (negative) sides. It is well-known that

C+
γm

− C−
γm

= Id

and [
C+

γm
+ C−

γm

][ f ](z) = 1

π i

∫
γm

f (ζ )

ζ − z
dζ , z ∈ γm .

It is also well-known that

(4.33) g±(z) = R±(z)C±
γm

[
f R−1

+
]

solves the RHP (4.31) for g, where R± denotes the limiting values of R from the

positive (negative) sides. Indeed,

g+ + g− = R+C+
γm

[
f R−1

+
]+ R−C−

γm

[
f R−1

+
]

= R+
(
C+

γm
− C−

γm

)[
f R−1

+
] = R+ f R−1

+ = f .

Since the RHP (4.31) for g is additive, we can look for g as a sum of individual

solutions of the RHP for each additive term of (2.10). Direct calculations, based

on (4.33) and the technique of Appendix C, yield

iπ

2

(µ

2
− z
)

�−→ 1

2
R

[
ln

(
µ

2
− a +

√(µ

2
− a
)2

+ b2

)
− ln b

]

− 1

2

(µ

2
− z
)[

ln
−
√

(
µ

2
− a)2 + b2 R + (z − a)(

µ

2
− a) + b2

z − µ

2

− ln b

]
.

(4.34)
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In order to compute g for the terms of (2.10) that contain logarithms, we need to

solve the RHP (4.31) where f (z) = (z + A) ln(z + A) for some A ∈ R. Then,

using (4.33), we get

g(z) = R(z)

2π i

∫
γm

(ζ + A) ln(ζ + A)

(ζ − z)R(ζ )
dζ

= R(z)

2π i

∫
γm

ln(ζ + A)

R(ζ )
dζ + (z + A)

R(z)

2π i

∫
γm

ln(ζ + A)

(ζ − z)R(ζ )
dζ .

(4.35)

Utilizing (C.1) and one of the integrals from (C.6) from Appendix C, we obtain

∫
γm

ln(ζ + A)

R(ζ )
dζ = i

∫ b

0

ln[(a + A)2 + b2]√
b2 − β2

dβ

= iπ ln
a + A +

√
(a + A)2 + b2

2
.

(4.36)

Utilizing the residue theorem, the second integral in (4.35) becomes

R(z)

2π i

∫
γm

ln(ζ + A)

(ζ − z)R(ζ )
dζ = 1

2
ln(z + A) − 1

2
R(z)

∫ −A

−∞

dζ

(ζ − z)R(ζ )
,(4.37)

where the evaluation of the latter integral yields

R−1(z)
[

ln(z + A) + ln[R(z) − (z − a)]

− ln[
√

(a + A)2 + b2 R(z) − (a + A)(z − a) + b2]] .(4.38)

Thus, we obtain

g(z) = 1

2
R(z) ln

a + A +
√

(a + A)2 + b2

2

+ 1

2
(z + A) ln

√
(a + A)2 + b2 R(z) − (a + A)(z − a) + b2

R(z) − (z − a)
.

(4.39)
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Applying (4.39) to (
µ

2
− z) ln(

µ

2
− z) and 1

2
[(z + T ) ln(z + T )+ (z − T ) ln(z − T )]

and taking into account (4.34), we obtain

g(z) =
µ

2
− z

2

[
ln

z − µ

2

−R(z) + z − a
+ ln b

]
+ z + T

4
ln
[√

(a + T )2 + b2 R(z) − (a + T )(z − a) + b2
]

+ z − T

4
ln
[√

(a − T )2 + b2 R(z) − (a − T )(z − a) + b2
]

− z

2
ln[R(z) − (z − a)] − t (z − a)R(z)

− 1

2
T tanh−1 2T

µ
− xz

2
− t z2 + 1

4
(µ ln 2 + επ) .

(4.40)

Subsequently, for h = 2g − f , we obtain

h(z) =
(

µ

2
− z

)[
ln b − iπ

2

]
− µ

2
ln[R(z) − (z − a)] − 2t (z − a)R(z)

+ z + T

2
ln

√
(a + T )2 + b2 R(z) − (a + T )(z − a) + b2

z + T

+ z − T

2
ln

√
(a − T )2 + b2 R(z) − (a − T )(z − a) + b2

z − T
.

(4.41)

In the particular case µ = 2, (4.40) and (4.41) become

g(z) = 1 − z

2
[ln(1 − z) + ln b] + z

2
ln
[√

a2 + b2 R(z) − a(z − a) + b2
]

− 1

2
ln[R(z) − (z − a)] − t (z − a)R(z)

− xz

2
− t z2 + 1

4
(µ ln 2 + επ) ,

h(z) = (1 − z)

[
ln b − iπ

2

]
+ z ln

√
a2 + b2 R(z) − a(z − a) + b2

z
− ln[R(z) − (z − a)] − 2t (z − a)R(z) .

(4.42)

4.3 Functions gx and gt

Functions gx and gt and related functions hx and ht , studied here, play an im-

portant role in our further analysis.

LEMMA 4.3 Expressions for gx and gt , x, t ≥ 0, are given by

(4.43) gx(z) = −1

2
[z + R(z)] and gt(z) = −(z + a)R(z) − z2 .
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PROOF: Since g(z) ∼ O(z − z0)
3/2 when z0 = α and z0 = ᾱ, we can look for

gx and gt as solutions of the RHPs

(4.44) y+ + y− = fx and y+ + y− = ft

on z ∈ γ , respectively, where fx = −z and ft = −2z2. These RHPs have unique

solutions in L2(γm), and it is easy to check that (4.43) are such solutions. �

COROLLARY 4.4 As a result of Lemma 4.3, we obtain alternative expressions for
g(z, x, t) by

g(z, x, t) = g(z, 0, t) − 1

2

∫ x

0

[z + R(z, s, t)]ds ,

g(z, x, t) = g(z, x, 0) −
∫ t

0

[(z + a)R(z, x, τ ) − z2]dτ ,

(4.45)

where R(z, u, v) = −
√

(z − a(u, v))2 + b2(u, v) .

Another immediate consequence of Lemma 4.3 and relations (2.19) and (2.20)

is

(4.46) hx(z, x, t) = −R(z) and ht(z, x, t) = −2(z + a)R(z) .

We now focus attention on the signs of �hx and �ht in the upper half-plane.

The real axis R is a zero level curve for both �hx and �ht . Additionally, the

segment [ᾱ, α] is a zero level curve for �hx . Since ht(z) ∼ O(z − α)1/2 near

z = α and ht ∼ O(z2) as z → ∞, there also exists an additional zero level

curve κ that connects α and i∞; see Figure 5.2. An equation for κ will be derived

in Lemma 5.3. It shows that κ can either lie in the upper half-plane or have a

bounded part lying in the lower half-plane. In the latter case, we replace this part

of κ by the corresponding segment of the real axis, so that �z ≥ 0 for all z ∈ κ .

LEMMA 4.5 For any x, t ≥ 0 we have the following:

(i) The inequality �hx(z) > 0 holds for all sufficiently large |z| in the upper
half-plane �z > 0. This inequality changes sign each time z crosses either the
contour γ +

m or the vertical segment [a, α].
(ii) The inequality �ht(z) < 0 holds for all sufficiently large |z| to the left of κ .

It changes its sign each time z crosses either through κ or through γ +
m .

PROOF: (i) The zero level curve of �hx(z) = √
(z − α)(z − ᾱ) is R ∪ [ᾱ],

where [ᾱ, α] is the branch cut of the function hx(z); see Figure 4.4. On the contour

γm , according to (2.21), the function hx satisfies

(4.47) (hx)+ + (hx)− = 0 .

Thus, �hx changes its sign each time z crosses either γ +
m or [a, α]. It is also easy

to see that arg(−hx(z)) = 1
2
[arg(z − α) + arg(z − ᾱ)] ∈ (0, π) if �z > 0 and −�z

is a sufficiently large positive number. For such z, �hx(z) > 0. Part (i) is proven.

The proof of part (ii) is similar to that for part (i). �
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FIGURE 4.4. Zero level curves of �hx (z).

4.4 Leading-Order Prebreak Solution

If m(0)(z, x, t) = I + m(0)

1 /z + O(z−2) is the expansion of the solution m to the

RHP (2.1) near z = ∞, then the potential q(x, t, ε) is given by

(4.48) q = −2
(
m(0)

1

)
12

;
see Section 2.1. As mentioned earlier, we now consider m to be a solution to the

RHP (2.11)–(2.12) instead of (2.1)–(2.2). In this section we compute the leading-

order term q0(x, t, ε) of the potential q(x, t, ε), corresponding to (2.11)–(2.12),

and show that q0(x, 0, ε) coincides with (1.2) as ε → 0. This is done under the

assumption that conditions (2.19) with N = 0 are satisfied in a region of the (x, t)–
plane, called the genus 0 region, that contains the semi-axis t = 0, x ≥ 0.

THEOREM 4.6 In the zero genus region, the leading-order term q0(x, t, ε) corre-
sponding to the RHP (2.11)–(2.12) is given by

(4.49) q0(x, t, ε) = A(x, t)e
i
ε

S(x,t) ,

where A(x, t) = b(x, t) and S(x, t) = −2
∫ x

0
a(s, t)ds, and expressions for a and

b are given in (4.27)–(4.30).

PROOF: Combining (4.48) and (2.13), we obtain

(4.50) q0(x, t, ε) = −(2m(3)

1

)
12

e4 i
ε

g(∞) .

According to (2.19) and (2.20), the diagonal entries of the jump matrix V (3), given

by (2.15), are

e±2 i
ε
(g+−g−) = e±2 i

ε
h+

where h+ ∈ R when z ∈ γ . Since N = 0, the nonzero off-diagonal element of

V (3) is −1. Using the factorization

(4.51)

(
e2 i

ε
h+ 0

−1 e−2 i
ε

h+

)
=
(

1 −e2i i
ε

h+

0 1

)(
0 1

−1 0

)(
1 −e−2 i

ε
h+

0 1

)
,
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which is a particular case of (2.16), we can reduce the RHP P (3) to the RHP P (mod):

(4.52) m(mod)
+ = m(mod)

−

(
0 1

−1 0

)
,

as discussed in Section 2.7. Using now the factorization

(4.53)

(
0 −1

1 0

)
= 1

2

(−i −1

1 i

)(
i 0

0 −i

)(
i 1

−1 −i

)
,

we obtain the solution to the RHP (4.52) as

(4.54) m(mod) = 1

2

(−i −1

1 i

)(
z − α

z − ᾱ

) 1
4 σ3
(

i 1

−1 −i

)
.

Then (m(mod))12 = − i
2
(β − β−1), where

β =
(

z − α

z − ᾱ

) 1
4

= 1 − ib

2z
+ O(z−2) .

Then (m(mod)

1 )12 = − 1
2
b, so that

(4.55) q0(x, t, ε) = b(x, t)e4 i
ε

g(∞) ,

as long as the conditions (2.19) are satisfied with N = 0. To complete the theorem,

it is sufficient to mention that, according to Lemma 4.3, gx(∞) = − 1
2
a. �

In order to provide the expression for S(x, t) in the closed form, let us now,

according to (3.17) and (C.2), compute g(∞) by

(4.56) g(∞) = 1

π

[ ∫ b

0

� f (a + iβ)
dβ√

b2 − β2
−
∫ µ

2

a

�[ f (x)]dx√
b2 + (x − a)2

]
.

Using (4.9) and integration formulae (C.6), Section C, we compute the first integral

in (4.56) to be

− 1

2

(
T tanh−1 T

µ

2

− b +
√

b2 +
(µ

2
− a
)2

−
(µ

2
− a
)

+ 1

2

[√
b2 + (a + T )2 +

√
b2 − (a − T )2 − (a + T )

])

+ 1

2

(
tb2 +

(µ

2
− a
)

ln

µ

2
− a +

√
b2 + (

µ

2
− a)2

2

)
+ 1

4
(µ ln 2 + επ)

+ 1

4

(
(a + T ) ln

a + T +
√

b2 + (a + T )2

2

+ (a − T ) ln
a − T +

√
b2 + (a − T )2

2

)
.
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The corresponding computation of the second integral yields

1

2

[√
b2 + ξ 2 −

(µ

2
− a
)

ln
(
ξ +

√
b2 + ξ 2

)]∣∣∣µ
2 −a

0

= 1

2

(√
b2 +

(µ

2
− a
)2

−
(µ

2
− a
)

ln

[
µ

2
− a +

√
b2 +

(µ

2
− a
)2
]

− b +
(µ

2
− a
)

ln b

)
.

Adding the latter two expressions and taking into account (4.4), we obtain

(4.57) g(∞) = 1

2

(
µ

2
ln b + t (2a2 − b2)

− T

[
tanh−1 T

µ/2
− 1

2
ln

a + T +
√

b2 + (a + T )2

a − T +
√

b2 + (a − T )2

]
+ 1

2
επ

)
.

Equations (4.4) yield

±
√

b2 + (a ± T )2 = µ

2
+ 2tb2 ± 2aT

µ

2
+ 2tb2

,

so that the logarithmic term in (4.57) becomes tanh−1 T
µ/2+2tb2 . Thus, we get

(4.58) g(∞) = 1

2

[
µ

2
ln b + t (2a2 − b2) − T tanh−1 2T tb2

T 2 + µtb2
+ 1

2
επ

]
.

Combined with (4.55), this equation yields the following corollary:

COROLLARY 4.7 The leading-order term q0(x, t, ε), obtained through the RHP
(2.11)–(2.12) according to (4.50), can be written as

(4.59) q0(x, t, ε) =

− b(x, t) exp

(
2

i

ε

[
µ

2
ln b + t (2a2 − b2) − T tanh−1 2T tb2

T 2 + µtb2

])
.

The required accuracy follows from the results of Section 9.

COROLLARY 4.8 The expression (4.59) with t = 0 coincides with (1.2).

PROOF: Indeed, in this case (4.58) yields g(∞) = 1
4
(µ ln b + επ). So, accord-

ing to (4.55),

(4.60) q0 = be
iµ
ε

ln b+iπ = −[cosh(x)]− iµ
ε

−1 ,

since, according to (4.11), b(x, 0) = 1
cosh x . This answer coincides with our initial

potential (1.2):

q = − 1

cosh x
e− iµ

ε
ln cosh x .

�



922 A. TOVBIS, S. VENAKIDES, AND X. ZHOU

FIGURE 4.5. Hyperbolic variables.

In the particular cases µ = 2 and µ = 0, according to (4.29) and (4.30), we

obtain

(4.61a) q0(x, u) = −
[

2 sinh u

sinh 2u − (u − x)

] 2i
ε

+1

exp

(
i

ε

2 sinh2 u − 1

sinh 2u − (u − x)

)
and

q0(x, u) = −
√

2 tanh u

sinh 2u − (u − x)
(4.61b)

× exp

(
i

ε

[
[(u − x) tanh u − 1]

√
u − x

sinh 2u − (u − x)

− 2 tan−1

√
(u − x) tanh u

sinh 2u − (u − x)

])
,

respectively, where u ≥ x ≥ 0.

4.5 Existence of the Contour γ When x = 0

The results of Section 4.4 are based on the assumption that the function g(z),
constructed in Section 4.2, and the yet-to-be-determined contour γ satisfy condi-

tions (2.19). In this and in the following section we will establish the existence of

such γ for x = 0 and x > 0, respectively, and for some t ≥ 0.

We start by introducing a new variable v by

(4.62) sinh v = z − a

b
,

which maps the upper z half-plane with the cut �z ≥ b, �z = a, into the strip

S = {v : 0 ≤ �v ≤ π
2
}; see Figure 4.5. Moreover, α �→ iπ

2
, T �→ −p,

−T �→ −q, and ±µ

2
�→ v±1, where p and q are defined by (4.6), and ±v±1 are

positive numbers.
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In the variables v, p, and q, we get R(z) = b cosh v and

(4.63)

√
(a + T )2 + b2 = b cosh q ,

√
(a − T )2 + b2 = b cosh p ,

z = b

[
sinh v + 1

2
(sinh p + sinh q)

]
,

so that, using (4.7), we can rewrite (4.41) after some algebra as

h(v, p, q) = 1

4
[µ − b(cosh q + cosh p)] sinh 2v

+ b

2
(sinh v + sinh q) ln i

cosh v−q
2

sinh v+q
2

+ b

2
(sinh v + sinh p) ln i

cosh v−p
2

sinh v+p
2

+ µ

2

(
v − iπ

2

)
.

(4.64)

Direct calculations show that h( iπ
2
, p, q) = 0 for all p and q. In the particular case

µ = 2, we have p = q = u, so that (4.64) becomes

h(v, u) = 1

2
[1 − b cosh u] sinh 2v

+ b(sinh v + sinh u) ln i
cosh v−u

2

sinh v+u
2

+
(
v − iπ

2

)
.

(4.65)

In the case µ = 0 the first term of (4.64) becomes −tb2 sinh 2v.

THEOREM 4.9 The vertical interval x = 0, 0 ≤ t < 1
2(µ+2)

of the (x, t)–plane
belongs to the genus 0 region.

PROOF: In order to prove existence of the contour γ + satisfying conditions

(2.19) with N = 0, we study the level curves of B, where h = A + i B in the strip

S. In the case µ < 2, i.e., T is purely imaginary, we consider S with the cut from

the origin to −p.

Let us study B on the real axis. If p, q ∈ R, i.e., if µ ≥ 2, we get

(4.66) B = π

2

(
b sinh v + b

2
(sinh q + sinh p) − µ

2

)
= π

2

(
z − µ

2

)
when v ≥ −p. Thus, B > 0 or B < 0 when v > v+1 or v < v+1, respectively. The

corresponding expressions on the intervals (−q,−p) and (−∞,−q) are π
2
(T −

µ

2
) < 0 and −π

2
(z + µ

2
), respectively. Thus, B is negative between v±1 and positive

outside these values.

In the case 0 ≤ µ < 2 the situation is the same because in this case p = q̄, so

that

(4.67)
b

2
(sinh v + sinh q) ln

cosh v−q
2

sinh v+q
2

+ b

2
(sinh v + sinh p) ln

cosh v−p
2

sinh v+p
2

∈ R
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if v > − sinh−1 a
b . Therefore, B = π

2
(z − µ

2
). For v < − sinh−1 a

b , we have to

replace i by −i in the logarithmic terms of (4.64) so that B = −π
2
(z + µ

2
).

To study B on the horizontal line l = {v : �v = π
2
}, we first compute the

derivative

∂h

∂v
(v, p, q) =

[
(µ − b(cosh q + cosh p)) cosh v

+ b

2
ln

cosh q−p
2

+ cosh(v − q+p
2

)

cosh q−p
2

− cosh(v + q+p
2

)

]
cosh v

= τ(v, p, q) cosh v .

(4.68)

It is easy to see that τ( iπ
2
, p, q) = 0 for all p and q, so that h has at least a third-

order zero at iπ
2

. In the particular case µ = 2, the previous equation becomes

∂h

∂v
(v, u) =

[
2(1 − b cosh u) cosh v + b ln i

cosh v−u
2

sinh v+u
2

]
cosh v

= τ(v, u) cosh v .

(4.69)

Substituting v = iπ
2

+ ξ in the case µ < 2, we get

∂h

∂v
= − sinh ξ

[
(µ − b(cosh q + cosh p)) sinh ξ

− i
b

2
ln

cos �q + i sinh(ξ − �q)

cos �q − i sinh(ξ + �q)

]
.

(4.70)

This expression becomes real for all ξ if and only if �q = 0, i.e., if a = 0.

According to (4.9), this implies u = 0 and, consequently, x = 0. Thus, for x = 0,
∂h
∂v

= Av + i Bv ∈ R on l. That means B is constant on l, and because v = iπ
2

is a

zero of h, we conclude that l is a zero level curve for B. The same is true for the

case µ ≥ 2, because in this case the logarithmic term of (4.66) becomes

(4.71) ln
cosh q−p

2
+ i sinh(ξ − u)

cosh q−p
2

− i sinh(ξ + u)
,

where, according to (4.7), u = q+p
2

.

To find other zero curves of B, we have to find zeros of ∂h
∂v

on l other than iπ
2

.

First notice that ∂h
∂v

( iπ
2

+ ξ, q, p) is an even function of ξ and that it goes to +∞
as ξ → +∞ when t > 0. The latter fact follows from

µ − b(cosh q + cosh p) = −4tb2 < 0 .

Direct computations yield

∂τ

∂v
= [µ − b(cosh q + cosh p)] sinh v

− b

2

[
cosh q

sinh v + sinh q
+ cosh p

sinh v + sinh p

]
.

(4.72)
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In the case x = 0 we know a = 0 and hence p = −q. Thus, the latter equation

becomes

(4.73)
∂τ

∂v
=
[
µ − 2b cosh q + b cosh q

cosh2 q − cosh2 v

]
sinh v .

The equation ∂τ
∂v

( iπ
2

+ ξ, q) = 0 then becomes

(4.74) µ = b cosh q

[
2 − 1

cosh2 q + sinh2 ξ

]
.

Thus,

(4.75) sinh2 ξ = cosh q

2b cosh q − µ
[b − 2b cosh2 q + µ cosh q] .

In order to show the existence of real solutions, we have to show that the right-

hand side is positive for all µ ≥ 0. Substituting b cosh q = √
T 2 + b2 and taking

into account (4.12), the right-hand side of (4.75) becomes

(4.76)

√
T 2 + b2

b2

[
1 − 4t

√
T 2 + b2

]
.

Since b(t) is an increasing function on [0, t0], where t0 = 1
2(µ+2)

and b(t0) =√
µ + 2, it is clear that (4.76) is positive when t ∈ [0, t0) and is zero when t = t0.

(In the special case when µ = 0, (4.76) also becomes 0 when t = 0.) Let ξ1 ≥ 0

denote the solution to (4.75). This is a simple zero of ∂h
∂v

( iπ
2

+ ξ, q).

The obtained results show that Aξ = � ∂h
∂v

( iπ
2

+ ξ, q) is zero at ξ = 0; then it

decreases until ξ = ξ1 and afterwards increases towards +∞. Thus, for any µ > 0

and for any t ∈ (0, t0), there is a unique value ξ0 > 0 such that

(4.77)
∂h

∂v

(
iπ

2
+ ξ0, q

)
= 0 .

In the case t = t0, the value ξ0 = 0, thus forming a fifth-order zero of h(v, q) at

v = iπ
2

. Because Aξ = Bη, where v = ξ + iη, we conclude that B(v) changes

sign: from negative to positive if ξ > ξ0 as v = ξ + iη crosses l from below,

and from positive to negative if ξ ∈ (0, ξ0). Since B is positive along the real axis

for v > v+1, there is a zero level curve of B in S that goes to infinity. Simple

asymptotic analysis of B shows that there is only one such a curve. Thus, we have

four zero level curves cj , j = 1, 2, 3, 4, of B inside the right half of the strip S,

emanating from iπ
2

+ ξ0, iπ
2

, v+1, and ∞, respectively; see Figure 4.6. The curve

c2 constitutes an angle π
3

with l because iπ
2

is a third-order zero of h.

Finally, let us study the behavior of B along the imaginary segment [0, iπ
2
]. In

the case x = 0 we have q = −p, so (4.68) becomes

∂h

∂v
(v, p, q) =

[
(µ − 2b cosh q) cosh v + b

2
ln

cosh q + cosh v

cosh q − cosh v

]
cosh v

= τ(v, q) cosh v .

(4.78)
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FIGURE 4.6. Zero level curves, x = 0.

We want to show that B ≤ 0 on [0, iπ
2
]. Since B(0, π

2
) = 0, it is enough to show

that Bη = Aξ , where v = ξ + iη, is nonnegative on [0, iπ
2
] if µ ≥ 2 and on [q, iπ

2
]

if 0 ≤ µ < 2. Thus, we want to show that M , where τ = M + i N , is nonnegative

there. Since τ( iπ
2
, q) = 0, it is enough to show that Nξ = −Mη is nonnegative.

Similarly to (4.73), we find

(4.79) Nξ (0, η) =
[
µ − 2b cosh q + b cosh q

cosh2 q − cos2 η

]
sin η .

As before, the equation Nξ (0, η) = 0 yields

(4.80) − cos2 η = cosh q

2b cosh q − µ
[b − 2b cosh2 q + µ cosh q] .

But, as shown above, the right-hand side of (4.80) is nonnegative. That implies

that Nξ (0, η) ≥ 0 on [0, iπ
2
] if µ ≥ 2 and on [q, iπ

2
] if 0 ≤ µ < 2. It is clear that

in the latter case Nξ (0, η) < 0 on [0, q]. That implies Bη > 0 on [0, iπ
2
] except,

possibly, some segment [0, s] ⊂ [0, q). But because B(0, 0) < 0, we again obtain

that B is negative on the whole [0, iπ
2
]. Thus, zero level curves of B cannot cross

the semi-interval [0, iπ
2
).

Since B(ξ, η) is a harmonic function, every closed and bounded level curve of B
should contain at least one singular point. Thus, the zero level curve c2 emanating

into S from iπ
2

cannot end at iπ
2

+ξ0. It also cannot end at ∞, since then it would be

intersected by c1. As the only remaining option, c2 connects iπ
2

and v+1, whereas

c1 ⊂ S goes from iπ
2

+ ξ0 to ∞ without intersecting c2. Therefore, c2 is the image

of our contour γ + under the map z �→ v. It is also clear that A = �h is decreasing

along γ +. The existence of the part of the contour γ connecting α and −µ

2
follows

from the fact that there is a zero level curve of B connecting iπ
2

and v−1. Thus,

the existence of the contour γ satisfying all conditions of (2.19) is established for

x = 0. The proof is completed. �

4.6 Existence of the Contour γ When x > 0

THEOREM 4.10 Let t0(x) be the maximal time such that all the points (x, t), where
x ≥ 0 is fixed and t ∈ [0, t0(x)), belong to the genus 0 region. Then t0(x) > 0 for
all x ≥ 0.
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PROOF: In the case x = 0, the existence of t0(0) = 1
2(µ+2)

was proven above.

In the case x > 0 the horizontal line l is not a zero level curve of B anymore.

However, B is monotonically decreasing along l according to (4.70) and (4.71),

where u > 0. The fact that B(0, π
2
) = 0 implies B < 0 for ξ > 0 and B > 0 for

ξ < 0.

Consider now the asymptotic behavior of B(ξ, η) in S when ξ → ±∞. Con-

sidering the first logarithmic term of (4.64), we obtain

(4.81) ln i
cosh v−q

2

sinh v+q
2

∼ ± iπ

2
∓ q + 2e∓v cosh q + O(e∓2v)

as v → ±∞. Substituting this and the corresponding expression for the other

logarithmic term and taking into account (4.7), we obtain

h(v, p, q) ∼ ∓ 1

2
tb2e±2v

± b

4
e±v[±iπ ∓ (q + p) + 2e∓v(cosh q + cosh p)]

± iπ

2

b

2
(sinh q + sinh p) − µ

2

( iπ

2
− v
)

+ O(e∓v)

(4.82)

as v → ±∞. Substitution of v = ξ + iη together with (4.7) yields

(4.83) B(ξ, η) ∼ −1

2
tb2e2ξ sin 2η + b

4
eξ (π cos η − 2u sin η) + O(ξ)

if ξ → +∞ and

(4.84) B(ξ, η) ∼ −1

2
tb2e−2ξ sin 2η + b

4
e−ξ (π cos η + 2u sin η) + O(ξ)

if ξ → −∞ in S. Notice that on the boundary lines η = 0 and η = π
2

of S, the

function B attains correspondingly positive and negative values as ξ → +∞, in

accordance with our previous analysis. Moreover, according to (4.83), there exists

a unique zero level curve of B in S that is asymptotic to 2tbeξ sin 2η = π cos η −
2u sin η as ξ → +∞. In particular, this equation asymptotically approaches the

graph η = πe−ξ /(4tb) if t > 0 and η = tan−1 π
2x if t = 0.

In the left half of S, however, according to (4.84), the function B > 0 for

all η ∈ [0, π
2
] if t = 0 and −ξ is sufficiently large. So, for t = 0 there are no

zero level curves of B going to infinity in the left half of S. Since the three zero

level curves of B emanating from iπ
2

into S cannot intersect each other, they have

to connect iπ
2

with the points v−1, v+1, and +∞. Thus, for t = 0 the existence

of contour γ + is proven. Consider now small but positive t . Then, according to

(4.84), B < 0 as ξ → −∞ along any horizontal line η = const except η = 0, π
2

.

Along these boundaries of S the function B is positive. Thus, there are two zero

level curves of B that are asymptotic to η = 0, π
2

as ξ → −∞. If t is small,

these curves meet each other and form a single curve c, given asymptotically by

2tbe−ξ sin 2η = π cos η + 2u sin η. Thus, the other zero level curves of B are
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FIGURE 4.7. Zero level curves, x > 0, t < t0(x).

topologically the same as for the case t = 0, and so the contour γ + still exists; see

Figure 4.7.

Let us now show that the presence of the vertical cut [0, T ] in the case 0 < µ <

2 (function h(z) has singularities of the type z ln z at z = ±T ) will not change the

topology of zero level curves of B = �h established above. We first prove that

B(0, y), where z = ζ + iy, is a convex function on the cut [0, T ].
LEMMA 4.11 For every x ≥ 0, t ≥ 0, the function B(0, y), where h = A + i B,
is convex on y ∈ [0, |T |]. If t = 0, then, additionally, B(0, y) is concave on
y ∈ [|T |,+∞).

PROOF: We start with the observation that hz = τ and hzz = τv

b cosh v
, where

z − a = b sinh v. Since hzz = Aζ ζ + i Bζ ζ = Aζ ζ − i Byy , we need to show that the

statement Byy > 0 is equivalent to �hzz = � cosh v̄τv < 0. Notice that �h(z) is

continuous across the cut [0, T ] (but �h(z) has a jump there). Let z = iy be a point

on [0, T ). Then the corresponding sinh v + sinh p = iy−T
b , sinh v + sinh q = iy+T

b .

Then (4.72) together with (4.7) yields

(4.85)
∂τ

∂v
=
[
−4tb2 − 1

2
b2 µ + 4tb2

|T |2 − y2

]
sinh v − b3 sinh 2u

2(|T |2 − y2)
.

Thus, τv is a linear function in sinh v, where both coefficients are negative.

The proof now follows from the fact that both

(4.86) � cosh v̄ = − sinh ξ sin η and � cosh v̄ sinh v = 1

2
sin 2η ,

where v = ξ + iη, are positive if sinh(ξ + iη) = iy−a
b . �

Since B(0, 0) < 0, Lemma 4.11 implies that either B < 0 everywhere on

[0, T ], or the cut is transversally intersected with only one zero level curve of B.

Let us now show that for t = 0 only a complementary arc γc connecting α to −µ

2



SEMICLASSICAL SOLUTIONS TO NLS 929

FIGURE 4.8. Zero level curves, x > 0, t > t0(x).

can cross the cut [0, T ]. Indeed, at x = 0 no zero level curve of �h intersects the

cut; see Section 4.5. Let us vary x . According to (4.64),

(4.87) �h(T ) = |T | ln
cosh x

|T | + µ

2

(
sin−1 |T | − π

2

)
.

We see that �h(T ) > 0 for sufficiently large x , so there will be an intersection

with the cut. If the main arc crosses the cut, it should also cross the imaginary axis

above T . Thus, the interval (T, i∞) will be crossed at least twice by the main and

the complementary arcs. But that contradicts the concavity of �h on (T, i∞). Now

fix some x > 0 and let t grow. If �h(T ) < 0 at t = 0, then �h will be negative

on the cut [0, T ] for all t , since �ht < 0 there; see Lemma 5.3. If �h(T ) ≥ 0 at

t = 0, then the complementary arc has already crossed [0, T ], and no other zero

level curve of �h can cross the cut for t > 0.

In the case when the complementary arc γc intersects [0, T ] (then, obviously,

�h(T ) ≥ 0), we can always deform γc within the positive domain of �h (i.e.,

domain �h(z) > 0) so that γc goes around z = T and does not cross the cut. Thus,

conditions (2.19) will be preserved, as well as the topology of zero level curves of

�h discussed above.

If x > 0 is kept fixed and t increases, the only way to change the topological

picture of the level curves of B is for the curve c to collide with the level curve

connecting iπ
2

and v−1 at some t0(x) > 0.

It is clear that the condition �(g+ + g− − f ) > 0 when z ∈ γ +
c of (2.19) with

N = 0 fails at the point (x, t0(x)). The topology of zero level curves of �h for

t > t0(x) is given in Figure 4.8. Thus, the theorem is established. �

As we have seen in the proof of Theorem 4.10, the point (x, t0(x)):

(1) satisfies the system of equations

(4.88) τ(v, p, q) = 0 and �h(v, p, q) = 0 ,
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and

(2) all points (x, t), where t ∈ [0, t0(x)), belong to the genus zero region.

The set of all points in the (x, t)–plane satisfying (1) and (2) is called a breaking
curve, and each such point is called a breaking point. In particular, it is clear that

x = 0 and t = 1
2(µ+2)

is a breaking point. The existence and properties of the

breaking curve are discussed in the next section.

5 Breaking Curve

In this section we prove that for any x > 0 there exists a finite value t0(x) such

that the conditions (2.19) with N = 0 are satisfied for all t ∈ [0, t0(x)) but fail

at t = t0(x). Thus, the function t0(x) is defined for every x ≥ 0. We prove that

t0(x) is a smooth, monotonically increasing, single-valued function that has linear

behavior as x → 0 and x → ∞.

5.1 Existence of the Breaking Curve

As we have seen in Section 4.6, system (4.88) determines a breaking point for

a given x > 0. Although we cannot solve the system (4.88) in explicit form, we

can show that such a point exists for any x > 0. Namely, we show that there exists

a line l in the upper z half-plane separating α and −µ

2
such that �h < 0 along l for

sufficiently large t . Thus, conditions (2.19) with N = 0 fail for sufficiently large t
since there is no zero level curve of h connecting α and −µ

2
.

LEMMA 5.1 For every x ≥ 0 there exists a finite t0(x).

PROOF: Using (4.68) and the fact that dh
dz = dh

dv
· 1

b cosh v
= b−1τ(v, p, q), we

calculate

(5.1)
dh

dz
= 1

2

[
ln

a + R(z) sinh u cosh u − (z − a) sinh2 u

a − R(z) sinh u cosh u − (z − a) sinh2 u
− 8t R(z)

]
.

Let us fix some ξ ∈ (−µ

2
, 0) and consider the vertical ray l = {z : z = ξ + iη, η ≥

0}. We want to show that B = �h < 0 on l for a fixed x and sufficiently large

t . Since, according to (4.66)–(4.67), we have B(ξ, 0) < 0, it is sufficient to prove

Bη = Aξ = � dh
dz < 0 on l; see Figure 5.1.

Taking into account Corollary 4.2, we obtain

R(z) ∼ (a − z) + b2

2(a − z)
,√

(a ± T )2 + b2 ∼ (a ± T ) + b2

2(a ± T )
, t → ∞ ,

(5.2)

uniformly in �z < 0. Therefore, using (4.10), we obtain

(5.3) R(z) sinh u cosh u = (a − z) sinh u cosh u + 1

2(a − z)
+ o(1)
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FIGURE 5.1. Signs of �h for large t .

as t → ∞. The real part of the logarithm in (5.1) then becomes

(5.4) ln
|(a − z)e2u + (a + z) + 1

(a−z) + o(1)|
|(a + z) + 1

(a−z) + o(1)| =

2u + ln
|(a − z) + o(1)|

|(a + z) + 1
(a−z) + o(1)| .

The latter logarithm is uniformly bounded on l for all large t . Thus, using (4.11),

we see that

(5.5) �dh

dz
= (4ta + x) − 4t (a − ξ) + Q = 4tξ + x + Q < 0

since t is sufficiently large and Q is bounded. Thus, the contour γ +
c in conditions

(2.19) cannot exist if t is sufficiently large, and the proof is complete. �

5.2 Properties of the Breaking Curve

Here we show that the function t0(x) is smooth and monotonically increasing

for all positive x . Let v0(x), together with t0(x), denote a solution of the system

(4.88) for a given x ≥ 0, and let z0(x) denote the point corresponding to v0(x) on

the complex z-plane. The following three lemmas are needed to prove the above-

mentioned properties of the breaking curve t0(x).

LEMMA 5.2 If µ ≥ 2 and (x, t0(x)) is a breaking point, then the corresponding
�z0(x) ≤ 0. Moreover, �z0(x) = 0 implies x = 0. If α → µ

2
, then z0 has to

approach the interval (−∞,−T ) if µ ≥ 2 or the union (−∞, 0] ∪ [0, T ] if µ < 2.

The proof of the lemma is based on MI conditions (3.5)–(3.9) for N = 1 and

is given in Section 6.4. It does not use any results concerning the breaking curve

obtained in the present section.
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FIGURE 5.2. Signs of �ht .

LEMMA 5.3 The whole zero level curve κ of �ht from Lemma 4.5 lies in the same
half-plane (left or right) where the point α ∈ κ lies; see Figure 5.2.

PROOF: We first express ht , given by (4.46), in the hyperbolic variable v =
ξ + iη as

(5.6) ht(v, x, t) = −2b2[sinh v + sinh p + sinh q] cosh v .

Then equation �ht = 0 yields the solution

(5.7) cos η = −a

b

sinh ξ

sinh2 ξ + 1
2

.

Therefore, according to (4.6) and (4.63),

(5.8) �z = b� sinh v + a = b sinh ξ cos η + a = a

cosh 2ξ
,

so that the sign of �z coincides with that of a. The proof is complete. �

LEMMA 5.4 For any x > 0, we have �hx(z0(x)) > 0 and �ht(z0(x)) < 0.

PROOF: In the case µ ≥ 2 the point z0(x) is in the left half-plane, according

to Lemma 5.2. Moreover, since z0(x) ∈ γ +
c , there exists a continuous curve in the

upper half-plane that connects z0(x) with −∞ and does not cross γ +. Thus, for

µ ≥ 2, the statement of the lemma follows from Lemma 4.5.

In the case µ < 2 we first consider �ht . According to (5.7), the zero level

curve κ of �ht(v) lies in the left v half-plane. Therefore, the assumption �v0 =
ξ0 ≥ 0, combined with Lemma 4.5 and the fact that z0(x) ∈ γ +

c , immediately

yields �ht(z0(x)) < 0. So, we consider only ξ0 < 0. We also exclude the case

�v0 = η0 = π
2

, since, according to the results of Sections 4.5 and 4.6 (namely, that

�h(v0) = 0 and η0 = π
2

implies v0 = iπ
2

), that would imply x = 0. Solving the

equation hv = 0 for the logarithmic term

(5.9)
1

2
b

[
ln i

cosh v−q
2

sinh v+q
2

+ ln i
cosh v−p

2

sinh v+p
2

]
= −[µ − b(cosh q + cosh p)] cosh v
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and substituting it into the other equation �h = 0 of (4.88), we obtain after some

algebra

�h = −1

2
[µ − b(cosh q + cosh p)]�[(sinh v + sinh p + sinh q) cosh v]

+ 1

2
�
[

T ln
cosh v−q

2
sinh v+p

2

cosh v−p
2

sinh v+q
2

]
+ µ

2
�
(
v − iπ

2

)
= 0 .

(5.10)

The latter term of �h(v0) is negative since η0 ∈ [0, π
2
). Let us show that the

logarithmic term in (5.9) cannot be positive if ξ = �v < 0. Indeed, µ < 2 implies

T = i |T |, so we need to show that

(5.11)

∣∣∣∣sinh u + sinh(v − q−p
2

)

sinh u + sinh(v + q−p
2

)

∣∣∣∣ ≤ 1 .

Note that, according to the last equation of (4.11), b sinh u > a if m < 2. There-

fore, using (4.8) and (4.9), we obtain s ∈ [0, π
2
] where

s = − i

2
(q − p) = −i cosh−1 a

b sinh u
.

Note that for any η, s ∈ [0, π
2
], we have sin2(η+ s) ≥ sin2(η− s) and cos(η+ s) ≤

cos(η − s). To prove inequality (5.11), it remains to reduce it to

(5.12) sin2(η − s) + 2 sinh u sinh ξ cos(η − s) ≤
sin2(η + s) + 2 sinh u sinh ξ cos(η + s) ,

which is true since ξ < 0. Now we see that (5.10) implies �[(sinh v + sinh p +
sinh q) cosh v] > 0, since −µ+b(cosh q+cosh p) = 4tb2 > 0. Thus, the required

inequality �ht(v0(x)) < 0 follows from (5.6). Notice that in the case µ = 2, the

proof is still valid.

It remains to consider �hx(v0(x)) in the case µ < 2. We first show that equation

hv = 0 of (4.88) is incompatible with �hx(v) = b� cosh v = 0. Indeed, the latter

equation implies v = iη, where η ∈ [0, π). So, (5.9) becomes

(5.13)
cosh q−p

2
+ cosh(u − iη)

cosh q−p
2

− cosh(u + iη)
= e8tb cos η .

The requirement that the left-hand side of (5.13) is real yields

ω2 − cosh2(u − iη) ∈ R ,

where ω = cosh q−p
2

is real. Thus, cosh(u − iη) should be either real or purely

imaginary, so that η = 0 or η = π
2

or u = 0. The first condition is incompatible

with �h(v) = 0, whereas any of the other conditions combined with v = v0(x)

implies x = 0. Thus, �hx(v0(x)) �= 0. To complete the proof of the lemma,

one has to note that, according to Corollary 4.2, Lemma 4.5, and Lemma 5.2,

�hx(v0(x)) > 0 for sufficiently large x . �
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THEOREM 5.5 The function t0(x) is smooth and monotonically increasing for all
x > 0.

PROOF: Let t0 = t0(x0), x0 > 0, be a breaking point. That means that the

system of equations (4.88) is satisfied with the given (x0, t0) and some uniquely

determined v0 = v0(x0, t0). (It is easy to see that the assumption of several cor-

responding v0 leads to a contradiction, since it would imply existence of a closed

zero level curve of the harmonic function �h(v).)

Let us fix x = x0 and write (4.88) in vector form as F(v, x, t) = 0, where the

first two components of F are �τ and �τ , and the last component is �h. Using the

Cauchy-Riemann equation, we calculate the Jacobian

(5.14)

∣∣∣∣ ∂ F

∂(v, t)

∣∣∣∣ = ∣∣∣∣∂τ

∂v

∣∣∣∣2 · �ht ,

since hv = 0 implies ∂�h
∂�v

= ∂�h
∂�v

= 0. Based on the topology of zero level curves

of �h, considered in Section 4.6, we note that hvv(v0) �= 0 for any v0, and hence

τv(v0) �= 0 at this point. The fact that �ht(v0) < 0 follows from Lemma 5.4. Thus,

according to the implicit function theorem, the system F(v, x, t) = 0 uniquely

defines a smooth real function t = t0(x) and a smooth, complex-valued function

v = v0(x) in a neighborhood of x = x0.

To prove that t0(x) is monotonically increasing, we calculate the full derivative

(5.15)
d

dx
h = hv

dv

dx
+ ht

dt

dx
+ hx

along the solution (v0(x), t0(x)) of F(v, x, t) = 0 and consider the imaginary part

of (5.15). Then, according to Lemma 5.4, dt
dx = −�hx (v0)

�ht (v0)
> 0. The proof is

completed. �

5.3 Asymptotics of the Breaking Curve

Here we study the asymptotics of t0(x) for large and small positive x . The

asymptotics obtained below near x = 0 shows continuity of t0(x) at t0(0) = 1
2(µ+2)

.

THEOREM 5.6 For any µ > 0,

(5.16) t0(x) =


x

2µ
(1 + o(1)) as x → ∞
1

2(µ + 2)
+ cot π

5

2
√

µ + 2
x + O(x3/2) as x → 0 .

PROOF: We first prove the large x asymptotics. According to Lemma 5.2 and

Corollary 4.2, the asymptotics (5.2), where z satisfies hz(z, x, t) = 0, is valid for

all large x uniformly in t ≥ 0. Substituting (5.2) into system (4.88), namely, into
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equations (4.41) and (5.1), and omitting some lower-order terms, we obtain

−π

2

(µ

2
− �z

)
− �z ln b − �

[(µ

2
− z
)

ln(a − z)

]
(5.17a)

+ �
[

z

2
ln

a2 − T 2

z2 − T 2

]
+ �

[
T

2
ln

(a + T )(z − T )

(a − T )(z + T )

]
= 0

and

(5.17b) 2u + ln
a − z

a + z + 1
2(a−z)

= 8t (a − z) + 4tb2

a − z
.

According to (4.9), the last term of the second equation is vanishing as u → ∞.

Then the real and imaginary part of the second equation can be written as

(5.18) x = −4t�z and − 8t�z = arg(a − z) − arg

(
a + z + 1

2(a − z)

)
.

Let us show that, according to Lemma 5.2, �z → 0 as x → ∞. In the case

µ ≥ 2 the statement is clear. Suppose now that µ < 2 and z approaches [0, T ] as

x → ∞. Then, according to the first equation, t → ∞. But the right-hand side of

the second equation is bounded, so �z → 0. Therefore, z approaches the negative

real semi-axis as x → ∞ for any µ > 0.

According to (4.9), t ∼ b−2 as u → ∞. Thus, boundedness of t�z implies

�z ln b → 0 as x → ∞. Collecting the leading-order terms of equation (5.17a),

we obtain

(5.19) −π

2

(µ

2
− �z

)
− 1

2
�z arg(z2 − T 2) = 0

as x → ∞. Thus, �z → −µ

2
as x → ∞. Substituting this expression into the first

equation of (5.18) yields (5.16). The proof of the large x asymptotics is complete.

Since we know that t0(x) is a smooth, increasing function on (0,∞), we are

looking for a solution (z0(x), t0(x)) to (4.88), where t0(x) is a smooth growing

solution for small x > 0. We want to find such a solution under the assumption

that z0(x) is close to z0(0) = i
√

µ + 2, where the breaking for x = 0 occurs.

Based on results of Section 4.1, this assumption implies that the values a(x), b(x),

and t (x) = t0(x) are close to 0,
√

µ + 2, and 1
2(µ+2)

, correspondingly, and that

u = 4ta + x → 0 as x → 0. Taking the two leading terms of the Taylor expansion

of τ(v, p, q) at v = iπ
2

, we rewrite the system (4.88) for the breaking curve t0(x)

for small x > 0 as

τv

(
iπ

2
, p, q

)
+ τvvv

(
iπ

2
, p, q

)
ζ 2

6
= 0 ,

�[hvvv

(
iπ

2
, p, q

)
ζ 3] = 0 ,

(5.20)

where v = iπ
2

+ ζ , �ζ < 0, and ζ ∈ C is small. The simple facts that τvv(
iπ
2
, p, q)

= 0 and hvvv(
iπ
2
, p, q) = 2iτv(

iπ
2
, p, q) are used here and below.
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We first consider the particular case µ = 2 and then make required adjustments

for the general case. Since in this case p = q = u, we get

(5.21)
∂τ

∂v
= 2(1 − b cosh u) sinh v − b cosh u

sinh v + sinh u
.

Then, using (4.29), we obtain

(5.22)
∂τ

∂v

(
iπ

2
, u

)
= 2

s(u, x) cosh u
[− sinh2 u − i[(u − x) cosh u − sinh u]] ,

where s(u, x) = sinh 2u − (u − x).

The complex number ∂τ
∂v

( iπ
2
, u) is in the second or third quadrant, so

(5.23) arg
∂τ

∂v

(
iπ

2
, u

)
= − tan−1

(
x

u2
+ O(u)

)
+ π

for small u > 0. Direct calculations for the third derivative yield

τvvv(v, u) =(5.24)

2(1 − b cosh u) sinh v − b cosh u
cosh2 v + 1 − sinh v sinh u

(sinh v + sinh u)3
,

τvvv

(
iπ

2
, u

)
= 2

s(u, x) cosh3 u

[
2 sinh2 u − i[(u − x) cosh3 u(5.25)

+ (1 − sinh2 u) sinh u]] ,
and

arg τvvv

(
iπ

2
, u

)
= − tan−1 (u − x) cosh3 u + (1 − sinh2 u) sinh u

2 sinh2 u
(5.26)

= − tan−1

(
2u − x

u2
+ O(u)

)
,

where u → 0. Since �τvvv(
iπ
2
, u) → 0 but �τvvv(

iπ
2
, u) does not approach 0 as

u → 0, we see arg τvvv(
iπ
2
, u) → −π

2
as u → 0. Moreover, the requirement

ζ 2 = −6
τv(

iπ
2
, u)

τvvv(
iπ
2
, u)

→ 0 as u → 0

implies τv(
iπ
2
, u) → 0, so that, according to (5.22), x = o(u).

Equations (5.20) can now be written as

arg ζ = 1

2
arg τv − 1

2
arg τvvv + π

2
+ πk ,

3 arg ζ = −π

2
− arg τv + πn ,

(5.27)
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where k, n ∈ Z. The requirement �ζ < 0, together with (5.23) and (5.26), yield

k = −2 and n = −1. Thus, (5.27) can be rewritten as

arg ζ = −1

2
tan−1

(
x

u2
+ O(u)

)
− 1

2
arg τvvv − π ,

3 arg ζ = −5

2
π + tan−1

(
x

u2
+ O(u)

)
.

(5.28)

The combination of these equations yields

(5.29) 5 tan−1

(
x

u2
+ O(u)

)
= −π + 3 tan−1

(
2u − x

u2
+ O(u)

)
,

so that in the limit u → 0 we obtain

(5.30) tan−1 x

u2
= π

10
.

This equation shows that along the breaking curve t0(x) we have x = δu2, where

δ → tan π
10

in the limit x → 0.

Computing the leading behavior of t as u → 0, where x = δu2, by (4.15), we

obtain

(5.31) t = 1

2(µ + 2)
+ 1 − 1

4
(µ + 2)δ2

2(µ + 2)
u2 + O(u3) .

Substitution of µ = 2 and δ = tan π
10

yields

(5.32) t0(x) = 1

8
+ cot π

10
− tan π

10

8
x + O(x

3
2 ) , x → 0 .

Thus, we construct the smooth and growing solution t0(x) for small x > 0 in the

case µ = 2.

Let us now calculate τv(
iπ
2
, p, q) and τvvv(

iπ
2
, p, q) for general µ ≥ 0. Based

on (4.72) and using (4.11), we obtain

(5.33)
∂τ

∂v

(
iπ

2

)
= [µ−b(cosh q+cosh p)]i−b sinh 2u − ib(cosh q + cosh p)

2 cosh q cosh p
.

Here we omitted the arguments (p, q) in ∂τ
∂v

. Our goal is to express all terms in

(5.33) through u and x . First, note that, according to (4.10) and (4.11),

b2 cosh q cosh p = a2 coth2 u − T 2 tanh2 u ,

b(cosh q + cosh p) = µ + 4tb2 = 2a coth u .

Thus

(5.34)
∂τ

∂v

(
iπ

2

)
= b2

[
−4ti − b sinh 2u − 2ai coth u

2(a2 coth2 u − T 2 tanh2 u)

]
.
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Using u = 4ta + x , we obtain after some algebra

(5.35)
∂τ

∂v

(
iπ

2

)
=

− sinh u
√

a2 coth2 u − T 2 + i(a coth u − (u − x)[a coth2 u − T 2 tanh2 u
a coth u ])

a2 coth2 u − T 2 tanh2 u
.

Multiplying (4.26) by coth2 u, we obtain a coth u = (µ+2)u
2(u+x)

+ O(u) as u → 0.

These formulae show that Rτv(
iπ
2
) < 0 and that the requirement ζ → 0 as u → 0

implies τv(
iπ
2
) → 0. So, we have x = O(u) as u → 0. Moreover, we can calculate

the analogue of (5.23),

arg τv

(
iπ

2

)
= −

√
µ + 2[x + µ−2

µ+2
(u2 − x2)(u + x)]

u2[1 − µ−2

4
x
u (2 + x

u )] + O(u)

= − tan

(√
µ + 2x

2u2
+ O(u)

)
+ π .

(5.36)

To calculate τvvv(
iπ
2
) we first notice that

τvvv

(
iπ

2

)
= (µ − 2b(cosh q + cosh p))i

− 1

2
ib

[
cosh q

(i + sinh q)2
+ cosh p

(i + sinh p)2

]
= ib

2

[
cosh q

(i + sinh q)2
+ cosh p

(i + sinh p)2
− 8tb

]
.

(5.37)

The sum of the two fractions is

(5.38)
(cosh q cosh p − 2)(cosh q + cosh p) + 2i sinh(p + q)

(i + sinh q)2(i + sinh p)2
.

Using (4.6) and (4.10), we obtain

(5.39) (i + sinh q)(i + sinh p) = −1 + 2i
a

b
+ a2 − T 2

b2
= −µ + 2

4
+ O(u) .

The imaginary part of the expression in the square brackets of (5.37) is of order

O(u). Thus, �τvvv(
iπ
2
) = O(u). Direct calculations, using (5.37)–(5.39), yield

�τvvv

(
iπ

2

)
= − 32

(µ + 2)3/2
.

So, arg τvvv(
iπ
2
) → −π

2
as u → 0.
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Substitution of this expression, together with (5.36) into (5.28), yields
√

µ + 2 x

2u2
= tan

π

10
.

So, x = δu2 as u → 0, where δ = (2/
√

µ + 2) tan π
10

. Combining this with (5.31)

after some algebra yields the second equation in (5.16). �

6 Postbreak Evolution: Higher Genus

In this section we show that conditions (2.19) with N = 1 are satisfied on and

immediately above the breaking curve t0(x), i.e., that there exists a function t1(x)

such that t0(x) < t1(x) ≤ +∞ and the region {x, t : t0(x) < t < t1(x), x ≥ 0} is a

genus 2 region. We will show that t1(x) = +∞ for all x ≥ 0 in the pure radiation

case µ ≥ 2. In the case 0 ≤ µ < 2, the questions of whether the genus 2 solution

breaks and if so how it breaks are still under consideration.

To obtain a genus 2 solution, we need to satisfy the conditions (2.28)–(2.29),

equivalent to (2.19), in the case N = 1, i.e., when the contour γm = γm,0 ∪ γ +
m,1 ∪

γ −
m,1 consists of three cuts: γm,0 with endpoints (ᾱ0, α0) as before in the genus 0

case, γ +
m,1 − a simple contour in the upper half-plane with endpoints (α2, α4) that

does not intersect γm,0 and γ −
m,1 = γ +

m,1. As shown above, the conditions (2.29) with

N = 0 break at t = t0(x), when a point z0 on γc satisfies h′(z0) = 0. According to

Theorem 3.1, the two functions h(z; x, t0(x)), determined by (3.4) for N = 0 and

N = 1, coincide. Here for N = 1 we have α = (α0, α2, α4), where α2 = α4 = z0

and α0 is equal to α for N = 0. The MI system (3.5) and (3.9) with N = 1 can be

written as four moment and two integral conditions:

(6.1)

1

π i

∫
γ̂

ζ k f ′(ζ )dζ

R(ζ )
= 0 ,

∫
γ̂m,c

h′(z)dz =
∫

γ̂m,c

R(z)dz
1

π i

∫
γ̂

f ′(ζ )dζ

(ζ − z)R(ζ )
= 0 ,

where k = 0, 1, 2, 3, the contours γ̂m = γ̂m,1 and γ̂c = γ̂c,1, and

R(z) =
√√√√ 5∏

j=0

(z − αj ) .

We show that the solution α to system (6.1) can be continued into some region

P containing the breaking curve t0(x), and that all the required conditions (2.29)

are satisfied in P+ = {x, t : t0(x) < t < t1(x)}, which is the part of P situated

above the breaking curve. Then the solution to (2.19) in P+ is given through (3.4),

(3.8), and (3.17). That allows us to calculate q0(x, t, ε) in P+ by solving the RHP

P (mod); see Section 2.7.
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The proof that conditions (2.19) with N = 1 are satisfied in P+ consists of

the following steps: a proof of the Jacobian formula (3.15), which establishes the

evolution theorem (Theorem 3.2) in Section 6.1; a proof that the system of MI

conditions (6.1), satisfied by α = (α0, z0, z0) on the breaking curve, has a unique

continuation into a vicinity of this curve; and that conditions (2.28)–(2.29), equiv-

alent to (2.19), hold above the breaking curve, Section 6.2. Differential equations,

satisfied by α in the genus N region, are considered in Section 6.3. The fact that in

the case µ ≥ 2 the entire region above the breaking curve t0(x) is a genus 2 region

is proven in Section 6.4.

6.1 Proof of Theorem 3.3

PROOF: We first prove the theorem for N = 1 and then extend the argument

for arbitrary N ∈ N. In the particular case N = 1, the Jacobian formula (3.15)

becomes

(6.2)

∣∣∣∣∂ F

∂α

∣∣∣∣ = 2∏
j=0

∣∣∣∣ h′(α2 j )

2R(α2 j )

∣∣∣∣2∏
j<l

(αl − αj ) ·
∫
γ̂m

∫
γ̂c

(z1 − z2)dz1 dz2

R(z1)R(z2)
.

Using

∂ R−1(z, α)

∂αj
= 1

2(z − αj )R(z, α)

and the moment conditions Mk , given by (3.5), we obtain

(6.3)
∂ Fk

∂αj
= 1

2

1

2π i

∫
γ̂

ζ k f ′(ζ )dζ

(ζ − αj )R(ζ )
= 1

2
αk

j

h′(ζ )

R(ζ )

∣∣∣∣
ζ=αj

,

where k = 0, 1, 2, 3, j = 0, 1, . . . , 5; all notation was introduced in Section 3.

According to (3.4), the latter ratio is well-defined at αj , j = 0, 1, . . . , 5. It will

be denoted by
h′(αj )

R(αj )
. Calculation of the last two lines

∂ F5,6

∂α
of the Jacobian matrix

yield

∂ F5,6

∂αj
=
∫

γ̂m,c

R(z)dz
1

4π i

∫
γ̂

[
1

ζ − aj
− 1

z − aj

]
f ′(ζ )dζ

(ζ − z)R(ζ )

= −1

2

h′(αj )

R(αj )

∫
γ̂m,c

R(z)dz

(z − αj )
.

(6.4)
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Thus,

∣∣∣∣∂ F

∂α

∣∣∣∣ = 2∏
j=0

∣∣∣∣ h′(α2 j )

2R(α2 j )

∣∣∣∣2 det



1 1 · · · 1

α0 α1 · · · α5

α2
0 α2

1 · · · α2
5

α3
0 α3

1 · · · α3
5∫

γ̂m

R(z)dz
(z−α0)

∫
γ̂m

R(z)dz
(z−α1)

· · · ∫
γ̂m

R(z)dz
(z−α5)∫

γ̂c

R(z)dz
(z−α0)

∫
γ̂c

R(z)dz
(z−α1)

· · · ∫
γ̂c

R(z)dz
(z−α5)


=

2∏
j=0

∣∣∣∣ h′(α2 j )

2R(α2 j )

∣∣∣∣2 ∫
γ̂m

∫
γ̂c

dz1dz2

R(z1)R(z2)

× det



1 1 · · · 1

α0 α1 · · · α5

α2
0 α2

1 · · · α2
5

α3
0 α3

1 · · · α3
5∏5

l=0(z1−αl )

(z1−α0)

∏5
l=0(z1−αl )

(z1−α1)
· · ·

∏5
l=0(z1−αl )

(z1−α5)∏5
l=0(z2−αl )

(z2−α0)

∏5
l=0(z2−αl )

(z2−α1)
· · ·

∏5
l=0(z2−αl )

(z2−α5)


.

(6.5)

To compute the latter determinant, note that

(6.6)

5∏
l=0

(z − αl) = z6 +
5∑

l=0

φ6−l z
l ,

where φl are the standard symmetric functions of α’s, for example, φ1 = −∑j αj ,

φ2 = ∑
k< j αkαj , etc. The next observation is that the coefficients φr,n of the

polynomial

(6.7)

∏5
l=0(z − αl)

(z − αs)
= z5 +

5∑
l=1

φ6−l,s zl−1 ,

where s = 0, 1, . . . 5, are themselves polynomials in αs of order r with coefficients

expressed in terms of φ1, . . . , φr . For example, φ1,s = −φ1 + αs , φ2,s = φ2 −
αsφ1 + α2

s , etc. Then, by adding proper linear combinations of the first four rows

of the determinant to the last two rows, we kill all but the last two terms in the

polynomials φ4,s and φ5,s . Since

φ5,s = −
∏5

l=0 αl

αs
, φ4,s =

∏5
l=0 αl

αs

[ 5∑
l=0

1

αl
− 1

αs

]
,
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the determinant from (6.5) becomes

(6.8) det



α2
0 α2

1 · · · α2
5

α3
0 α3

1 · · · α3
5

α4
0 α4

1 · · · α4
5

α5
0 α5

1 · · · α5
5

[α0
∑5

l=0
1
αl

− 1]z1 − α0 [α1
∑5

l=0
1
αl

− 1]z1 − α1 · · · [α5
∑5

l=0
1
αl

− 1]z1 − α5

[α0
∑5

l=0
1
αl

− 1]z2 − α0 [α1
∑5

l=0
1
αl

− 1]z2 − α1 · · · [α5
∑5

l=0
1
αl

− 1]z2 − α5


= (z1 − z2)

∏
j<l

(αl − αj ) ,

where the last expression was obtained after taking proper linear combinations

of the last two rows and computing the corresponding Vandermonde determinant.

Combining (6.5) and (6.8), we obtain (6.2). The proof for N = 1 is completed.

In the case of a general N , we observe that the “Vandermonde part” of the first

determinant in (6.5) consists of the first 2N + 2 rows, and the “integrals part” con-

sists of the last 2N rows. Taking the integration outside, we obtain the determinant

similar to the second determinant in (6.5), where the (2N + 2 + m)th row

(6.9) Lm = (p0(zm), p1(zm), . . . , p4N+1(zm)) ,

m = 1, . . . , 2N , consists of the polynomials

(6.10) ps(zm) = z4N+1
m +

4N+1∑
l=1

φ4N+2−l,s zl−1
m .

Here φl,s = αl
s + ∑l−1

k=0 ckα
k
s and ck are symmetrical polynomials in αj , j =

0, 1, . . . , 4N + 1. Because of this structure of φl,s , one can eliminate all terms

of degree z2N
m and higher in all the polynomials (6.10) by taking proper linear com-

binations with the first 2N + 2 rows of the Vandermonde part of the determinant.

Thus, we can assume that the polynomials ps(zm) in (6.9) are

(6.11) ps(zm) = α2N+2
s z2N−1

m +
2N−1∑
l=1

φ̃4N+2−l,s zl−1
m ,

where φ̃l,s are symmetric polynomials in αj , j = 0, 1, . . . , 4N + 1 .

To obtain a (4N + 2) × (4N + 2) Vandermonde determinant, we proceed with

the Gaussian elimination process within the rows Lm . In particular, subtracting

L2N from the rest of Lm and factoring out zm − z2N in each row, we obtain new

rows of the form

(6.12) L(1)
m = (zm − z2N )

(
p(1)

0 , p(1)

1 , . . . , p(1)

4N+1

)
,
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where

(6.13) p(1)
s (zm, z2N ) = α2N+2

s

(
z2N−1

m − z2N−1
2N

)+
2N−1∑
l=2

φ4N+2−l,s

(
zl−1

m − zl−1
2N

)
.

We continue the process by subtracting row L (1)

2N−1 from the previous rows L (1)
m ,

m = 1, . . . , 2N − 2, and factoring out zm − z2N−1. Eventually the first row of the

integrals part will become (α2N+2
0 , α2N+2

1 , . . . , α2N+2
2N+1) multiplied by

∏2N
l=2(z1 −zl).

Using now the inverse part of the Gauss method, we found that the m th row of the

integrals part is (α2N+1+m
0 , α2N+1+m

1 , . . . , α2N+1+m
2N+1 ) multiplied by

∏2N
l=m+1(zm −

zl). Thus, we obtain the required expression for the Jacobian

(6.14)

∣∣∣∣∂ F

∂α

∣∣∣∣ =
2N∏
j=0

∣∣∣∣ h′(α2 j )

2R(α2 j )

∣∣∣∣2∏
j<l

(αl − αj )

∫
γ̂m,1

∫
γ̂c,1

· · ·
∫

γ̂m,N

∫
γ̂c,N

2N∏
j<l

(zj − zl)

2N∏
k=1

dzk

R(zk)
,

where the latter integral can be written as the determinant (3.16). �

COROLLARY 6.1 For any nondegenerate α, the Jacobian (3.15)–(3.16) is different
from 0.

The proof of the corollary follows from the definition of degeneracy (see Sec-

tion 3) and properties of holomorphic differentials of the Riemann surface R of R.

Effectively, the corollary says that for our f the Jacobian is nonzero if all α are

distinct, since for all such α we have h′(z) ∼ O(z − aj )
1/2 when z approaches αj .

Moreover, we have seen in Section 4.6 that h′(z)/(2R(z)) �= 0 even if two or three

branch points α2 j collide at some point z in the upper half-plane.

6.2 Transition from Genus 0 to Genus 2

According to Sections 4.5 and 4.6, the solution to (2.19) with N = 0 was

established in the region x ≥ 0, t ∈ [0, t0(x)). On the breaking curve itself,

i.e., when t = t0(x), x > 0, the inequality on the single complementary arc γ +
c

in (2.19) breaks down, but all other conditions still hold. Thus, according to the

degeneracy theorem (Theorem 3.1), we can obtain a solution α = (α0, α2, α4),

where α2 = α4, to the system MI (6.1) when (x, t) is on the breaking curve. Our

next goal is to show that this solution can be continued into a vicinity of (x, t). The

solution on the breaking curve is degenerate, leading to the Jacobian | ∂ F
∂α

| = 0. We

overcome this difficulty by using a smooth change of variables that transforms the

Jacobian (6.2) to one that is different from zero. We then show that the function

g and the constants W and �, determined through α by (3.3) and (3.8), satisfy

conditions (2.19) with N = 1 in some region {(x, t) : t0(x) < t < t1(x)} above the

breaking curve.
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Given some (x, t) and α satisfying (6.1), the RHP (3.1) uniquely determines

the function g′(z) by (3.3), which, in turn, uniquely determines g and h. Let us

denote these objects by subscript 2, since N = 1 corresponds to genus 2N = 2.

Similarly, we will use the subscript 0 in the genus 0 case, i.e., when there is only

one interval γ +
0 with endpoints µ

2
and α0 in the RHP (3.1), where α0 was calculated

in Section 4.1 and �α0 ≥ 0. According to the degeneracy theorem (Theorem 3.1),

the system of MI conditions (6.1) coincides with systems (4.2) and (4.88), and

h0(z; x, t) ≡ h2(z; x, t) when (x, t), x > 0, is on the breaking curve. It also

follows from (2.19) and (3.8) that �1 = 0 and W1 = �h(α2). The case x = 0 and

t = 1

2
√

µ+2
corresponds to α0 = α2 = α4 = i

√
µ + 2.

Let us now consider the behavior of the Jacobian (6.2) near a point (x, t0(x)),

x �= 0, on the breaking curve, i.e., in the limit 2δ = α2 − α4 → 0 and, correspond-

ingly, 2δ̄ = α3 − α5 → 0, when no other pairs of α’s approach each other.

LEMMA 6.2 There exists a constant A �= 0 such that

(6.15)

∣∣∣∣∂ F

∂α

∣∣∣∣ = A|δ|2 ln |δ|[1 + o(δ)]

as δ → 0.

PROOF: Note that there are exactly three zero level curves of �h emanating

from any αj . That means h′(αj )/R(αj ) ∈ C
∗, i.e., is finite and nonzero. The

counting of zero level curves of �h shows that the latter fact would not change

if two or more points αj coincide. Thus, in the limit δ → 0, the first product in

(6.2) approaches a certain nonzero value, whereas the second product behaves like

a nonzero constant times |δ|2. To understand the behavior of the integral factor in

(6.2), note that

R−1(z) = ((z − L)2 − δ2)− 1
2 ((z − L̄)2 − δ̄2)− 1

2 R−1
0 (z)

= 1

2i�L

[
1

z − L
− 1

z − L̄

]
R−1

0 (z)[1 + O(|δ|2)] ,
(6.16)

where 2L = α2 + α4 and R0 = √
(z − α0)(z − α1). Thus, changing the order of

integration in the double integral in (6.2), we evaluate this integral as

D =
∫
γ̂c

dz2

R(z2)

∫
γ̂m

(z1 − z2)dz1

R(z1)

= π

�L

∫
γ̂c

[
L − z2

R0(L)R(z2)
− L̄ − z2

R0(L̄)R(z2)

]
dz2 + O(|δ|2) .

(6.17)

Note that the first term of the integrand has a singularity near the point z2 = L̄
as δ → 0, whereas the second term has a singularity near the point z2 = L . To

evaluate the leading-order behavior of these terms as δ → 0, we need to integrate

only in the vicinities of the corresponding points L and L̄ , where we can assume
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R(z) ≈
√

(z − L)2 − δ2(L − L̄)R0(L) and R(z) ≈
√

(z − L̄)2 − δ̄2(L̄ − L)R0(L̄),

respectively. Substituting these expressions into (6.17), we obtain

D → π

�L|R0(L)|2
[ ∫

γ̂ +
c

dz√
(z − L)2 − δ2

−
∫
γ̂ −

c

dz√
(z − L̄)2 − δ̄2

]

= 2π

�L|R0(L)|2 �
[ ∫

γ̂ +
c

dz√
(z − L)2 − δ2

]
→ − 2π

�L|R0(L)|2 ln |δ|
(6.18)

as δ → 0. Here γ̂ ±
c denote small pieces of the contour γ̂c close to the points L and

L̄ , respectively. Now we see that (6.15) follows from (6.18). �

By making a proper change of variables, we can reduce the Jacobian | ∂ F
∂α

| to a

nonzero constant in the limit δ → 0. However, we simultaneously need to show

that the entries of the corresponding Jacobian matrix are bounded as δ → 0. To

find the required change of variables, we need the following statement:

PROPOSITION 6.3 There exists φ ∈ [0, 2π) such that limδ→0 arg δ = φ.

PROOF: Let us write the first integral condition I1 of (6.1) as

(6.19)
1

π i

∫
γ̂

f ′(ζ )dζ

R(ζ )

∫
γ̂m

A0(z) + A1(z, δ)

ζ − z
dz = 0 ,

where R(z) = A0(z) + A1(z, δ) with A1 ∼ O(|δ|2). Using the same argu-

ments as in (6.16), we obtain A0(z) = (z − L)(z − L̄)R0(z) and A1(z, δ) =
− 1

2
[δ2 z−L̄

z−L + δ̄2 z−L
z−L̄

]R0(z) + o(δ2). Using residues, we compute the inner integral

as 2π�L[δ2 R0(L)

ζ−L − δ̄2 R0(L̄)

ζ−L̄
]. Thus (6.19) becomes

(6.20) 2π�L

[
δ2 h′(L)R0(L)

R(L)
− δ̄2 h′(L̄)R0(L̄)

R(L̄)

]
+ o(δ2) =

4π i�L�
[
δ2 h′(L)R0(L)

R(L)

]
+ o(δ2) = 0 .

Hence, in the limit δ → 0, we obtain arg δ2 = −θ + πn, where θ = arg h′(L)R0(L)

R(L)

and n ∈ Z. Thus, the statement is proven. �

Note that n can change only if δ2 h′(L)R0(L)

R(L)
passes through 0, i.e., only if δ = 0.

Thus, the change of arg δ cannot occur anywhere in a vicinity of a breaking point

but at the point itself.

THEOREM 6.4 A solution α to (6.1) on the breaking curve can be uniquely ex-
tended into some region containing the breaking curve.
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PROOF: On the breaking curve the system has a solution, as was shown above.

The change of variables α �→ α̃, where α̃ = {α0, α1, L , L̄, δ, δ̄}, changes the

Jacobian (6.15) by a constant nonzero factor. On the other hand, all columns of the

matrix ∂ F
∂α̃

are well-defined on the breaking curve except the partial derivatives

(6.21)
∂ F

∂δ
= ∂ F

∂α2

− ∂ F

∂α4

,
∂ F

∂δ
= ∂ F

∂α2

− ∂ F

∂α4

,

where

∂ F

∂αj
= 1

2

h′(αj )

R(αj )
Cj

with Cj denoting the j th column in (6.5). It is easy to see that

h′(α2)

R(α2)
− h′(α4)

R(α4)
∼ O(δ) as δ → 0 .

The first five entries of C2 through C4 possess the same property, whereas for the

last entry, similar to (6.18), we obtain∫
γ̂c

[
1

z − α2

− 1

z − α4

]
R(z)dz = 2δ

∫
γ̂c

R(z)dz

(z − α2)(z − α4)

≈ 4i R0(L)�(L)δ ln |δ| .
(6.22)

The corresponding expression for ∂ F
∂δ̄

is 4i R0(L̄)�(L)δ̄ ln |δ|. Thus,

∂ F

∂δ
= 2i

h′(L)

R(L)
R0(L)�(L)δ ln |δ| + O(δ) ,

∂ F

∂δ̄
= 2i

h′(L̄)

R(L̄)
R0(L̄)�(L)δ̄ ln |δ| + O(d̄) .

(6.23)

Introducing new variables σ = δ2 and σ̄ = δ̄2, we obtain that the last entries of ∂ F
∂σ

and of ∂ F
∂σ̄

become

∂ F6

∂σ
= 1

2
i
h′(L)

R(L)
R0(L)�(L) ln |σ | + O(1) ,

∂ F6

∂σ̄
= 1

2
i
h′(L̄)

R(L̄)
R0(L̄)�(L) ln |σ | + O(1) .

(6.24)

All other entries of these columns do not have singularities in σ .

Introducing now new variables s1 and s2 by

(6.25) σ = e−iθ s1

ln |s1|
− e−iθs2 , σ̄ = eiθs2 ,
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where θ was defined earlier as arg[ h′(L)

R(L)
R0(L)], and using (6.24), we obtain

∂ F6

∂s2

= −e−iθ ∂ F6

∂σ
+ eiθ ∂ F6

∂σ̄
= O(1) ,

∂ F6

∂s1

= e−iθ 1

ln |s1|
∂ F6

∂σ
.

(6.26)

Note that s1

ln |s1| = eiθσ + e−iθ σ̄ = ±2|σ |, where the positive or the negative sign

holds if arg σ = −θ or if arg σ = −θ + π , respectively. Therefore, ln |σ | ∼ ln |s1|
as σ → 0. This implies that the second equation in (6.26) is O(1). Thus, the

Jacobian matrix in the variables α0, α1, L , L̄ , s1, and s2 is bounded.

According to (6.15), the Jacobian J1 in the variables α0, α1, L , L̄ , σ , and σ̄ has

the leading term O(ln |s1|). Since

(6.27)

∣∣∣∣ ∂(σ, σ̄ )

∂(s1, s2)

∣∣∣∣ = det

(
e−iθ 1

ln |s1|(1 − 1
ln |s1|) −e−iθ

0 eiθ

)
1

ln |s1|
,

the Jacobian J2 in the variables α0, α1, L , L̄ , s1, and s2 is

(6.28) J2 = J1

∣∣∣∣ ∂(σ, σ̄ )

∂(s1, s2)

∣∣∣∣ = O(1)

as σ → 0. We can now apply the implicit function theorem to show the existence

of a unique solution to (6.1) in the vicinity of x0. Thus, the proof is complete. �

LEMMA 6.5 The variable δ = α2 − α4 changes its argument by π
2

when x is
crossing the breaking curve through a point (x0, t0), x0 > 0.

PROOF: Let us first prove the statement for fixed t0. If α̂ denotes the variables

{α0, α1, L , L̄, s1, s2}, then, as it follows from the proof of the previous theorem,

α̂x = −(Fα̂)
−1 Fx is bounded near the point (x0, t0). We want to show that at least

one of the values (s1)x = (α̂5)x and (s2)x = (α̂6)x is different from zero. In order

to do so, we calculate

(6.29)
∂ F

∂α̂
= ∂ F

∂α

(
∂α̂

∂α

)−1

.

Direct calculation shows that the 6×6 matrix ∂α
∂α̂

, written as a block matrix of 2×2

blocks, is

(6.30)
∂α

∂α̂
=
I 0 0

0 I M
0 I −M

 where M = 1

2

(
− e−iθ√

σ ln |σ |
e−iθ√

σ

0 eiθ√
σ̄

)
.

Then the linear system of equations for α̂x , written in block matrix form, becomes

(6.31)

F11 F12 + F13 (F12 − F13)M
F21 F22 + F23 (F22 − F23)M
F31 F32 + F33 (F32 − F33)M

 α̂x = −Fx ,

where ∂ F
∂α̂

= {Fi j }, i, j = 1, 2, 3.
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Let us now assume that (α̂5)x = (α̂6)x = 0 and show that this assumption

leads to a contradiction. Indeed, taking into account (6.5) and considering the limit

δ → 0, the system (6.31) becomes the overdetermined system of five equations

and four unknowns

(6.32)



1 1 1 1

α0 α1 L L̄

α2
0 α2

1 L2 L̄2

α3
0 α3

1 L3 L̄3∫
γ̂c

R(z)dz
z−α0

∫
γ̂c

R(z)dz
z−α1

∫
γ̂c

R(z)dz
z−L

∫
γ̂c

R(z)dz
z−L̄

β = −Fx ,

where

β = Col(β1, β2, β3, β4)

= Col

(
h′(α0)

2R(α0)
(α0)x ,

h′(α1)

2R(α1)
(α1)x ,

h′(L)

2R(L)
Lx ,

h′(L̄)

2R(L̄)
L̄ x

)
.

Here we took into account the fact that all the integrals
∫
γ̂m

in the fifth row of (6.5)

approach 0 as δ → 0, so that the fifth equation in the system (6.31) becomes trivial

in this limit.

Using the same arguments as in the proof of Theorem 6.1 and the fact that

R(z) = (z − L)(z − L̄)R0(z), and subtracting a linear combination of the first two

equations from the last equation of (6.32), we reduce the last row of the matrix in

(6.32) to

(6.33)

∫
γ̂c

Col
(
α2

0(z − φ) + α3
0, α

2
1(z − φ) + α3

1, L2(z − φ) + L3,

L̄2(z − φ) + L̄3
) dz

R0(z)
,

where φ = 2�(α0 + L). Observing that this row is a linear combination of the

third and fourth rows of (6.32), we can rewrite the last equation of (6.32) after

some algebra as

(6.34) �
∫ L

α0

(z − α0)dz

R0(z)
= 0 .

This equation is equivalent to �R0(L) = 0, which contradicts (4.46) and Lem-

ma 4.5. According to the arguments in the proof of Theorem 6.4, s2 = o(s1) as

δ → 0. Thus, we obtain (s1)x �= 0, whereas (s2)x = 0. This implies that

δ = O

(
x − x0

ln |x − x0|

) 1
2

as x → x0 .

It is now clear that arg δ changes by π
2

as x passes through x0. According to (6.20),

the only way limδ→0 arg δ can experience a change is when the point (x, t) crosses

the breaking curve. Therefore, the change of arg δ by π
2

occurs regardless of how

(x, t) crosses the breaking curve. The proof is complete. �
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FIGURE 6.1. Possible topology of the level curves of �h.

THEOREM 6.6 Conditions (2.19) with N = 1 are satisfied in some region above
the breaking curve.

PROOF: To establish the existence of g in the genus 2 region, we need to

show that in addition to existence of the three main arcs with endpoints αj , j =
0, 1, . . . , 5, symmetrical with respect to the real axis, we also have the right topol-

ogy of the level curves of �h(z, x, t), i.e., that �h(z, x, t) < 0 on both sides of the

cut from α2 to α4. This condition is necessary for the required inequalities on h
to be satisfied. Considering branches of the zero level curves of �h(z, x, t) in the

upper half-plane, we observe that there are three branches of this curve going to

infinity, two branches emanating from each of the points α0, α2, and α4, and one

branch emanating from −µ

2
. One additional branch connects the points α2 and α4

and the points µ

2
and α0. The only two possible topological portraits of zero level

curves of �h(z, x, t), characterized by the sign of �h(z, x, t) on both sides of the

cut α2 and α4, are shown in Figure 6.1.

In the prebreak region the genus 0 asymptotics for the NLS (1.1)–(1.2) is valid,

so that the genus 2 asymptotics cannot be valid there. To be more precise, the

corresponding leading-order terms are different, and the error estimates from the

next section complete the argument. Thus, the sign of �h(z, x, t) on both sides of

the cut from α2 to α4 before the break is positive. To show the transition to genus 2

asymptotics after crossing the breaking curve, we need to show the change of sign

of �h(z, x, t) after the break.

Indeed, the function h′(z)
R(z) is analytic in a vicinity of the main arc γ +

m and has

limits as z approaches the endpoint α2 or α4 of γ +
m . Moreover, these limits continu-

ously depend on α2 and α4, even if they coincide with each other. Thus, in a small

vicinity (say, of order δ2, where α2 − α4 = 2δ) of α2, we have

h′(z) = h0(z − α2)
1
2 + o(z − α2)

1
2 = K

√
δ(z − α2)

1
2 ,

where K ∈ C
∗. Then

h(z) = 2

3
K

√
δ(z − α2)

3
2 (1 + o(1)) .

Choosing arg(z − α2) = arg δ, we obtain

(6.35) arg h(z) = 2 arg δ + arg K .

Since, according to Lemma 6.5, arg δ changes by π
2

after crossing the breaking

curve, we conclude that �h changes its sign on the ray arg(z − α2) = arg δ and
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FIGURE 6.2. Change of sign after the break.

small z − α2 after crossing the breaking curve, providing �h �= 0. But the last

condition is guaranteed since z lies between zero level curves of �h; see Figure 6.2.

So, �h also changes sign on both sides of the main arc γ +
m after crossing the

breaking curve. The proof is complete. �

6.3 Differential Equations for α

In this subsection we derive differential equations for α, which are used to

extend the solution to the system F(α, x, t) = 0 of Theorem 6.4 from a vicinity

of the breaking curve to the region Q of the x, t-plane where all α’s are finite and

stay away from the real axis. The breaking curve itself cuts Q into two parts,

Q = Q+ ∪ Q−, which lie above or below the breaking curve, respectively. It

will be shown later that in the case µ ≥ 2 the statement of Theorem 6.6 can be

extended from a vicinity of the breaking curve onto the whole region Q+, i.e., that

conditions (2.19) with N = 1 are satisfied in Q+. That means Q+ ⊆ P+.

The system of equations F(α, x, t) = 0, given by (6.1), gives rise to the sets of

ordinary differential equations

(6.36) αx = −(Fα)
−1 Fx

and

(6.37) αt = −(Fα)
−1 Ft ,

where Fα = ∂ F
∂α

and the partial derivatives

Fx = Col

(
0, 0, 1,

1

2

5∑
j=0

αj , 0, 0

)
,

Ft = 4 Col

(
0, 1,

1

2

5∑
j=0

αj ,
3

8

5∑
j=0

α2
j + 1

4

∑
i< j

αiαj , 0

)
,

(6.38)
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are computed using the residue formula at infinity. According to Cramer’s rule,

(6.39) (αj )x = −|Fj x |
|Fα|

and

(6.40) (αj )t = −|Fjt |
|Fα|

,

where αj , j = 0, 1, . . . , 5, denotes the j th component of vector α, and |Fj x | and

|Fjt | denote the determinant |Fα|, given by (6.14), with the j +1th column replaced

by Fx or Ft , respectively.

LEMMA 6.7 The solution α to (6.1), established in Theorem 6.4, has a unique
extension onto Q.

The proof of the statement follows the existence and uniqueness theorem, since

(6.36) and (6.37) are autonomous systems of differential equations, where the right-

hand sides are C1 vector functions in Q.

In the rest of this section we derive the equations for αx and αt . Let us first

focus on the equation (6.39). Since all but two entries of Fx are zeros, we get

(6.41) |Fj x | = (−1) j+4
∏
k �= j

h′(αk)

2R(αk)

(
M3, j − 1

2

5∑
j=0

αj M4, j

)
,

where Ml, j denotes the (l, j) minor of the matrix in (6.5). In particular,

(6.42) M4,6 =

∫
γ̂m

∫
γ̂c

dz1dz2

R5(z1)R5(z2)
det



1 1 · · · 1

α0 α1 · · · α4

α2
0 α2

1 · · · α2
4∏4

l=0(z1−αl )

(z1−α0)

∏4
l=0(z1−αl )

(z1−α1)
· · ·

∏4
l=0(z1−αl )

(z1−α4)∏4
l=0(z2−αl )

(z2−α0)

∏4
l=0(z2−αl )

(z2−α1)
· · ·

∏4
l=0(z2−αl )

(z2−α4)


,

where

Rj (z) =

√∏5
l=0(z − αl)

(z − αj )
.

Note that if
4∏

l=0

(z − αl) =
5∑

m=0

φmz5−m ,

where the φ’s are standard symmetrical functions of α0, α1, α2, α3, and α4, then∏4
l=0(z − αl)

(z − αk)
=

4∑
m=0

ψmz4−m ,
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where

(6.43) ψm = αm
k φ0 + αm−1

k φ1 + · · · + φm , m = 0, 1, 2, 3, 4.

Taking the linear combinations of the rows in the determinant in (6.42), we can

reduce the last two rows so that the k th entry in these rows becomes α3
k z1,2 +

α4
k − α3

kφ1, respectively. It is now easy to see that the latter determinant can

be reduced to a Vandermonde determinant, and we obtain M4,6 = ∏′
k<l(αk −

αl)
∫
γ̂m

∫
γ̂c

(z1−z2)dz1dz2

R5(z1)R5(z2)
, where the prime denotes the absence of the considered αj

in a product or in a sum. The same arguments lead to

(6.44) M4, j+1 =
′∏

k<l

(αk − αl)

∫
γ̂m

∫
γ̂c

(z1 − z2)dz1dz2

Rj (z1)Rj (z2)
.

Applying similar arguments, we find

(6.45) M3,6 =

∫
γ̂m

∫
γ̂c

dz1dz2

R5(z1)R5(z2)
det



1 1 · · · 1

α0 α1 · · · α4

α3
0 α2

1 · · · α3
4∏4

l=0(z1−αl )

(z1−α0)

∏4
l=0(z1−αl )

(z1−α1)
· · ·

∏4
l=0(z1−αl )

(z1−α4)∏4
l=0(z2−αl )

(z2−α0)

∏4
l=0(z2−αl )

(z2−α1)
· · ·

∏4
l=0(z2−αl )

(z2−α4)


,

so that the entries k, m, k = 0, 1, 2, 3, 4, m = 5, 6, of the last two rows of the

determinant can be reduced to

(6.46) α2
k (z

2
m−4 + φ1zm−4 + φ2) + α4

k .

Taking linear combinations of the last two rows, we obtain

M3,6 = −
′∏

k<l

(αk − αl)

∫
γ̂m

∫
γ̂c

[(z2
1 − z2

2) + φ1(z1 − z2)]dz1 dz2

R5(z1)R5(z2)

and, similarly,

(6.47) M3, j+1 = −
′∏

k<l

(αk − αl)

∫
γ̂m

∫
γ̂c

[(z2
1 − z2

2) + φ1(z1 − z2)]dz1 dz2

Rj (z1)Rj (z2)
.

Using the same routine, we obtain

(6.48) M2, j+1 =
′∏

k<l

(αk − αl)

∫
γ̂m

∫
γ̂c

[(z3
1 − z3

2) + φ1(z2
1 − z2

2) + φ2(z1 − z2)]dz1 dz2

Rj (z1)Rj (z2)
.
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Thus, according to (6.41),

|Fjt | = (−1) j+1
∏
k �= j

h′(αk)

2R(αk)

×
′∏

k<l

(αk − αl)

∫
γ̂c

[(z2
1 − z2

2) + (αj − 1
2

∑
αk)(z1 − z2)]dz1 dz2

Rj (z1)Rj (z2)
,

(6.49)

so that, using (6.2) and (6.39), one obtains

(6.50) (aj )x = 2R(αk)

h′(αk)

∏
k �= j

(αk − αj )
−1

[(
αj − 1

2

∑
αk

)D1, j

D
+ D2, j

D

]
,

where

(6.51) D = det

(∫
γ̂c

dz2

R(z2)

∫
γ̂m

dz1

R(z1)∫
γ̂c

z2dz2

R(z2)

∫
γ̂m

z1dz1

R(z1)

)
, Dk, j = det

∫γ̂c

dz2

Rj (z2)

∫
γ̂m

dz1

Rj (z1)∫
γ̂c

zk
2dz2

Rj (z2)

∫
γ̂m

zk
1dz1

Rj (z1)

 .

Let us now derive the equation for αt . Similarly to (6.41), we obtain

|Fjt | = (−1) j+4
∏
k �= j

h′(αk)

2R(αk)

×
(

1

2

5∑
j=0

αj M3, j − M2, j −
[

3

8

5∑
j=0

α2
j + 1

4

∑
i< j

αiαj

]
M4, j

)
,

(6.52)

which, together with (6.44), (6.47), and (6.48), yields after some algebra

(6.53) (aj )t = 2R(αk)

h′(αk)

· (4α2
j − 2αj

∑
k αk +∑i<k αiαk −∑k α2

k )D1, j + 4(αj − 1
2

∑
αk)D2, j + 4D3, j

D
∏

k �= j (αk − αj )
.

6.4 Postbreak Solution in the Case µ ≥ 2

In this section we first show that in the case µ ≥ 2 solutions to (6.1) αj (x, t),
j = 0, 1, . . . , 5, are bounded and stay away from the real axis for any compact set

S of the (x, t), where x ≥ 0, t > 0. The proof of the corresponding Theorem 6.8,

given below, can be found in the forthcoming paper [34], since it fits naturally

into its context. We then prove that α stays nondegenerate in the whole postbreak

region.

Let us start by transforming the contour of integration γ̂ in the four moment

conditions Mk ,

(6.54)
1

π i

∫
γ̂

ζ k f ′(ζ )dζ

R(ζ )
= 0 ,
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FIGURE 6.3. Deformation of γ̂ .

k = 0, 1, 2, 3, into the sum of two contour integrals encircling the upper half-plane

and lower half-plane parts γ̂ ± of γ̂ . The only point where these contours intersect

R is z = µ

2
. The value of the integrals will not be changed if we add the con-

stants ± iπ
2

to the integrand in M3 in the upper and lower half-planes, respectively.

Deform the contours γ̂ ± to unions of R and the corresponding large radius semicir-

cles C±. In the case µ < 2 we should also include the segments [0,±T ] to these

deformations.

To compute the integrals in (6.54), we rewrite f ′(z) from (4.3) as

(6.55) f ′(z) = iπ

2
+ ln

z

z − µ

2

+ 1

2
ln

(
1 − T 2

z2

)
− x − 4t z = iπ

2
+ f̂ (z) ,

where the logarithm terms have cuts along [0,
µ

2
] and [−T, T ], respectively. Note

that f̂ (z) is analytic at infinity, so for this term the contour of integration could

be deformed into a circle of some large radius, and the value could be computed

through the residue at z = ∞; see Figure 6.3. Because of Schwarz reflection

symmetry, the combined integrals over R yield

(6.56)


1
π

∫
R

ζ k� f ′(ζ )dζ

R(ζ )
, k = 0, 1, 2,

1
π

∫
R

[ζ 3� f ′(ζ )−R(ζ )]dζ

R(ζ )
, k = 3.

Note that, according to (6.55), � f ′(ζ ) = π
2

if ζ ≤ −T or ζ ≥ µ

2
, and � f ′(ζ ) =

−π
2

if T ≤ ζ <
µ

2
and is equal to 0 on (−T, T ). Thus, replacing R(z) by |R(ζ )|

along R (i.e., replacing R(ζ ) by −R(z) for ζ >
µ

2
), we get � f ′(ζ ) = −π

2
sign ζ

if |ζ | ≥ T and 0 otherwise. Therefore, for the solitonless case µ ≥ 2, the moment



SEMICLASSICAL SOLUTIONS TO NLS 955

conditions (6.54) become

(M0)

∫
|ζ |≥T

sign ζ dζ

|R(ζ )| = 0 , (M1)

∫
|ζ |≥T

ζ sign ζ dζ

|R(ζ )| = 8t ,

(M2)

∫
|ζ |≥T

ζ 2 sign ζ dζ

|R(ζ )| = 2x + 8t
2∑

j=0

a2 j ,

(M3)

∫
|ζ |≥T

[ζ 3 sign ζ − |R(ζ )|]dζ

|R(ζ )| = 2x
2∑

j=0

a2 j + 8t K (α) − µ + 2T ,

(6.57)

where αj = aj + ibj , the quadratic form K (α) = 1
2

∑
j<k(a2 j +a2k)

2 − 1
2

∑2
j=0 b2

2 j ,

and

(6.58) |R(z)| =
2∏

j=0

|z − α2 j | , z ∈ R .

One has to take the Cauchy principal value of the integrals in M2 and M3. In the

case µ < 2 the value of T becomes purely imaginary. Thus, we have to integrate

the integrals on the left-hand sides of Mk along all of R and add the integrals

2i
∫ T

0
� ζ k

R(ζ )
dζ to the corresponding right-hand sides.

PROOF OF LEMMA 5.2: In our present notation, we have z0 = α2 = α4 and

α = α0. The condition M0 immediately implies �α2 ≤ 0. It is also clear that

�α2 = 0 requires �α0 = 0, which, according to results of Sections 4.5 and 4.6,

takes place only at the breaking point x = 0, t = 1
2(µ+2)

. But if x > 0, then

�α0 > 0 implies �α2 < 0. The last statement of Lemma 5.2 also follows from M0

immediately. This completes the proof. �

THEOREM 6.8 If µ ≥ 2, then for any compact set S of the parameters x ≥ 0,
t > 0, the values of αj satisfying (6.57) are bounded and separated from R.

Theorem 6.8 shows that in the case µ ≥ 2 a collision of α’s cannot happen

anywhere on the real axis, including the point z = ∞. Note that the assumption

µ ≥ 2 rules out any singularities of f (z) in the upper half-plane. Let us show that

α stays nondegenerate in the whole postbreak region. Then, according to the evo-

lution theorem (Theorem 3.2), conditions (2.19) with N = 1 can be extended from

some region above the breaking curve (see Theorem 6.6) to the whole postbreak

region.

THEOREM 6.9 In the case µ ≥ 2 the solutions of equations (6.1) satisfying the
boundary condition α2 = α4 and �α0 ≥ 0 on the breaking curve have a unique
continuation into the entire region above the breaking curve t = t0(x). Moreover,
all the conditions (2.19) with N = 1 are satisfied in that region.
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PROOF: According to Theorem 6.4 and Lemma 6.7, such a solution exists in

a region Q+ above the breaking curve, where the α’s are bounded and distinct. If

the α’s stay distinct, conditions (2.19) with N = 1 can break only if one of the

inequalities in (2.19) breaks. That would require another branch of a zero level

curve of �h to intersect the contour γ . But in the case µ ≥ 2 such an extra branch

has no place to originate from, since three branches of the zero level curve of �h
going to infinity already exist. (Note that in the case µ < 2 such an extra branch

could originate from the vertical cut [−T, T ].) Since the α’s stay bounded and

away from the real axis for all t ≥ 0, it remains only to prove that after the break

the points α0, α2, and α4 stay distinct.

Let us first use (6.57) to show that α0, α2, and α4 cannot become equal after the

break. Indeed, if they are equal, then, according to M0, the common point α0 = ib
is on the positive imaginary semiaxis. Then, according to M2, we obtain x = 0.

Direct computations show that the remaining conditions M1 and M3 determine the

corresponding b and t uniquely. But such values b0 = √
µ + 2 and t0 = 1

2(µ+2)

have already been determined for the first break. Thus, the case α0 = α2 = α4 is

excluded.

Let α4 denote the last branch point on the arc of the zero level curve of �h = 0

in the upper half-plane connecting µ

2
with −µ

2
. Then the only possibilities left

for collision are between α2 and α4 and between α0 and α2. Indeed, the collision

between α0 and α4 leads to a contradiction since it would imply the existence of a

nontrivial (since the angles at α2 are π
3

) loop α0–α2–α4 of the zero level curve of

the harmonic function �h.

Suppose that some point (x1, t1) in the postbreak region is a point of collision

of α2 with α0 or α4 (double point), denoted by z0, where α̃ denotes the remaining

branch point. Then the contour γ + consists of the main arc γm connecting µ

2
with

α̃ and the complementary arc γc connecting α̃ with −µ

2
. The double point z0 is also

on the contour γ +. Note that, according to M0, α̃ and z0 are situated in opposite

half-planes. In the case of the α2–α4 collision, α̃ = α0 and z0 = α2 = α4 lies on

γc. In the case of the α0–α2 collision, α̃ = α4 and z0 = α0 = α2 lie on γm .

Let t0(x̂) = t1 where x̂ > x1, and now let (x1, t1) be the first collision point on

the line t = t1 to the left of the breaking curve; see Figure 6.4.

According to the degeneracy theorem (Theorem 3.1), the point α̃ satisfies equa-

tions (4.1), so that either �α̃ > 0 or �α̃ < 0; see Theorem 4.1. Let us show that the

former case is not possible. Indeed, let α̃(x̂, t1) and z0(x̂, t1) be the branch point

and the double point at the point (x̂, t1), respectively. Let us consider a curve θ

passing from some fixed point on the interval (−µ

2
,

µ

2
) to i∞ through z0 such that

�h0(z) < 0 for all z ∈ θ except z = z0; see Figure 6.5. According to Lemma 4.5,

�h0(z) < 0 for all z ∈ θ , �z < 0, when x < x̂ and t = t1. So, there can be no dou-

ble point z0(x, t1) in the left half-plane. But, according to M0, �z0(x, t1) < 0. The

obtained contradiction shows that the case �α̃ > 0 is excluded. (In the case when

γm “veers” into the left half-plane, z0(x̂, t1) cannot be inside a “loop” of γm where
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FIGURE 6.4. Points x1 and x̄ .

FIGURE 6.5. Curve θ .

�hx(z0) < 0; see Figure 4.4. Indeed, it would contradict the fact that �h(z) > 0

for all z = a + iη, η > b; see Figure 4.7 and the proof of Theorem 4.10.)

Thus, we have to consider the case �α̃ < 0 and �z0 > 0. If the double point

z0 ∈ γm (see Figure 6.6), then the conditions (2.19) with N = 0 are satisfied for all

x ∈ [0, x1), t = t1, due to the fact that �hx(z) > 0 above γ when �z > 0 and due

to the topology of zero level curves of �h0(z).
If the double point z0 ∈ γc (see Figure 6.7), then �hx(z0) < 0, since otherwise

the conditions (2.19) are satisfied with both N = 2 and N = 0 when x ∈ (x1, x̂),

t = t1. Then, according to Lemma 4.5, the point z0 lies “below” γm . So, conditions

(2.19) with N = 0 are satisfied for some x < x1 that are close to x1. We can now

claim that these conditions are valid for all x ∈ [0, x1), t = t1. Indeed, the only

way for them to have (the first) break at some point (x, t1), where x ∈ [0, x1), is for

the branch of the zero level curve of �h0 that starts and ends at infinity to reconnect

itself to γ +
c at some point z0(x, t1). Note that reconnection to γ +

m is impossible due
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FIGURE 6.6. Case �â < 0, z0 ∈ γm .

FIGURE 6.7. Cases �â < 0, z0 ∈ γc.

to the sign structure of �h0. Since �z0(x, t1) > 0, we have that �hx at (z0(x, t1))
is negative. Thus, reconnection at z0(x, t1) is not possible, since it would mean

that conditions (2.19) with N = 0 were violated before the point (x, t1) (for some

larger x).

Thus, any collision of α’s at the point (x1, t1) above the breaking curve implies

that conditions (2.19) with N = 0 are satisfied for x = 0 and some t > t0(0),

where t0(0) = 1
2(µ+2)

. Let us show that this is impossible.

At the breaking point (0, t0) the branch point α = i
√

µ + 2. The topology of

zero level curves of �h is shown on Figure 6.8.

After the breaking time, α moves either to the right or to the left half-plane

according to Theorem 4.1. In the former case, there can be no zero level curve

of �h0(z) connecting α and −µ

2
for t > t0 due to the “sea of minuses,” since

�h0(i
√

µ + 2) < 0. In the latter case, there can also be no zero level curve of

�h0(z) connecting α and µ

2
for t > t0. Indeed, this level curve cannot pass through

the positive sector above i
√

µ + 2, because �ht(z) is positive there, and cannot

pass through the negative sector below i
√

µ + 2, because �ht(z) is negative there.

At the point i
√

µ + 2 itself, the function �h0 attains either positive or negative

values, depending on what sheet of the Riemann surface of h0 we are considering.
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FIGURE 6.8. Level curves of �h at x = 0, t = t0(0).

FIGURE 7.1. Basic cycles.

Thus, conditions (2.19) with N = 0 cannot be satisfied for x = 0 and any t > t0(0).

The proof is complete. �

7 Solution of the Model RHP

7.1 Riemann-Hilbert Formalism for the Inverse Scattering Problem

In this section we derive the explicit solution of the model RHP P (mod). With the

cuts along the main arcs γm , we construct a hyperelliptic surface with a canonical

homology basis as shown in Figure 7.1.

The dotted curves pass through the second sheet. The cycles {α j ,β j }N
| j |=1 form

a canonical homology basis, where 2N is the genus of the surface, N > 0. Now

we are aiming at eliminating the diagonal part of the jump matrix V (mod) by intro-

ducing a function g̃(z) as follows: Set m̃(mod) = m(mod)e−2(i/ε)g̃σ3 . Then the RHP

P (mod) is transformed into the RHP P̃ (mod): m̃(mod)
+ = m̃(mod)

− Ṽ (mod), where

(7.1) Ṽ (mod) = e2 i
ε

g̃−σ3 V (mod)e−2 i
ε

g̃+σ3 .
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On the main arcs the matrix Ṽ (mod) is

(7.2) Ṽ (mod) =
(

0 e− 2i
ε

(W−g̃−−g̃+)

−e
2i
ε

(W−g̃−−g̃+) 0

)
,

whereas on the complementary arcs Ṽ (mod) is

(7.3) Ṽ (mod) = e2 i
ε
(�+g̃−−g̃+)σ3 .

It is now clear that to eliminate the diagonal part we have to set the RHP for

g̃ as:

(7.4)

{
g̃+(z) − g̃−(z) = � when z ∈ γc

g̃+(z) + g̃−(z) = � when z ∈ γm .

Here � = (�−N , . . . , �−1, �1, . . . , �N )T, where the real numbers �k , k > 0, are

defined in (3.8) and, according to the symmetry condition, �−k = �k . The (2N +
1)–dimensional vector � consists of 2N constants �k ∈ C, k = ±1,±2, . . . ,±N ,

to be determined and �0 = 0. In fact, these constants are determined uniquely by

the solvability of the scalar RHP (7.4). Here and henceforth we keep the notation

� for the vector � = (�−N , . . . , �−1,�1, . . . , �N )T.

Now the RHP P̃ (mod) has no jumps on the complementary arcs, whereas on the

main arcs γm,k , k = ±1,±2, . . . , ±N ,

(7.5) Ṽ (mod) =
(

0 e− 2i
ε

(Wk−�k )

−e
2i
ε

(Wk−�k ) 0

)
,

and Ṽ (mod) = iσ2 on γ0 = γ +
m,0∪γ −

m,0. Here γm,k = γ +
m,k for k > 0 and γm,k = γ −

m,−k
for k < 0. The same convention is applied to γc,k .

Next we proceed to determine �. Using the convention of (2.19), i.e., that � =
�k and � = �k when z ∈ γm,k or z ∈ γc,k , respectively, k = ±1,±2, . . . ,±N ,

the function g̃(z) has the Cauchy representation

(7.6) g̃(z) = R(z)

2π i

[ ∫
γm

�

(ζ − z)R+(ζ )
dζ +

∫
γc

�

(ζ − z)R(ζ )
dζ

]
.

By requiring that g̃(z) in (7.6) be analytic at ∞, we obtain the system of mo-

ment conditions

(7.7)

∫
γm

�

R+(ζ )
ζ j dζ +

∫
γc

�

R(ζ )
ζ j dζ = 0 , j = 0, 1, . . . , 2N − 1.

If this system is uniquely solvable, then the symmetries of � and of ζ j dζ/R(ζ )

would produce the symmetry �k = �̄−k . To solve system (7.7), we may use

holomorphic differentials. The Riemann surface theory gives a basis ω = (ω−N ,
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ω−N+1, . . . , ω−1, ω1, . . . , ωN ) of holomorphic differentials dual to the α cycles;

see Figure 7.1.

(7.8)

∫
α j

ωk = δjk , | j |, |k| = 1, . . . , N ,

where δjk denotes the Kronecker symbol. Each of these differentials ωk has the

form ωk = Pk (z)
R(z) dz, where Pk(z) is a polynomial of degree less than 2N . Thus the

linear combinations of (7.7) produce the system

(7.9)

∫
γm

�ωj (ζ ) +
∫
γc

�ωj (ζ ) = 0 , | j | = 1, . . . , N .

Using (7.8), we obtain solutions to (7.9) as

(7.10) �j = −2

∫
γc

�ωj , | j | = 1, . . . , N .

With the choice of � given by (7.10), the RHP P̃ (mod) is supported only on γm .

Define W̃ ∈ C
2N as W̃ = W − �. Then W̃ has the symmetry

(7.11) W̃ k = W̃−k .

The jump matrix Ṽ (mod) is now given by

(7.12) Ṽ (mod) =
(

0 e− 2i
ε

W̃

−e
2i
ε

W̃ 0

)
on γm . This RHP is very similar to that from [14] except here we have in general

nonreal W̃ . However, we will adopt a slightly different approach for this RHP.

The Riemann period matrix is defined as

(7.13) τ = (τk j ) =
(∫

β j

ωk

)
, | j |, |k| = 1, . . . , N .

τ is known to be symmetric and pure imaginary, and −iτ is positive definite. The

Riemann theta function is defined as

(7.14) θ(s) =
∑

l∈Z2N

e2π i(l,s)+π i(l,τ l) , s ∈ C
2N .

The theta function satisfies

θ(s) = θ(−s) ,(7.15a)

θ(s + ej ) = θ(s) ,(7.15b)

θ(s + τj ) = e±2π isj −π iτj j θ(s) ,(7.15c)

where ej is the j th column of I2N×2N and τj = τej . We call Ł = Z
2N + τZ

2N the

period lattice of the theta function.
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Denote u(z) = ∫ z
α1

ω and

(7.16) M(z, d) ≡ (M1,M2) =
(

θ(u(z) − Ŵ
2π

+ d)

θ(u(z) + d)
,
θ(−u(z) − Ŵ

2π
+ d)

θ(−u(z) + d)

)
,

where Ŵ = −2 i
ε
(W̃−N , . . . , W̃−1, W̃1, . . . , W̃N )T and d ∈ Z

2N is a vector to be

determined. Although u(z) is multivalued, M(z, d) is single valued and meromor-

phic away from γm . Moreover, M satisfies

(7.17) M+ = M−

(
0 e− 2i

ε
W̃

e
2i
ε

W̃ 0

)

on γm (see [41]) .

Introduce

λ(z) =
(

z − α0

z − α1

N∏
j=1

(z − α4 j )(z − α4 j−1)

(z − α4 j−2)(z − α4 j+1)

) 1
4

with branch cuts along γm . We choose the branch of λ(z) such that limz→∞ λ(z) =
1 and that λ+ = iλ− on γm . One can directly verify that

(7.18) N+ = N−Ṽ (mod) ,

where

(7.19) N (z) = λσ3(z)

(
M1(z, d1) −iM2(z, d1)

−iM1(z, d2) M2(z, d2)

)
.

We need to choose vectors d1 and d2 such that N (z) is locally L2 at the branch

points αk , k = 0, 1, . . . , 4N + 1. According to the theory of Riemann surfaces

[17], we may set

(7.20) d1 =
∫

γm\γm,0

ω = 1

2
(1, 1, . . . , 1)T ∈ C

2N

so that θ(u(z) ± d1) has exactly 2N zeros (of square root type) at the beginnings

of arcs γm, j , | j | = 1, . . . , N . Note that d1 = − ∫
γm,0

ω because ω is analytic at

infinity. Similarly, we may set d2 = 0 so that θ(u(z) ± d2) has exactly 2N zeros

(of square root type) at the ends of arcs γm, j , | j | = 1, . . . , N . According to (7.19),

N (z) has at worst quarter root type singularities at the endpoints αk of the main

arcs. Thus, we conclude that N (z) is a fundamental solution to the RHP Ṽ (mod),
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which has not yet been normalized at infinity:

N (∞) =
(

M1(∞, d1) −iM2(∞, d1)

−iM1(∞, 0) M2(∞, 0)

)

=


θ(u(∞) − Ŵ

2π
+ d1)

θ(u(∞) + d1)
−i

θ(u(∞) + Ŵ
2π

+ d1)

θ(u(∞) + d1)

−i
θ(u(∞) − Ŵ

2π
)

θ(u(∞))

θ(u(∞) + Ŵ
2π

)

θ(u(∞))

 .

(7.21)

Note that some symmetry in (7.21) can be observed by writing u(∞)+d1 = ∫∞
α0

ω.

In order to find the final, i.e., the normalized, solution to the RHP, we need to

know g̃(∞).

As shown in [17], there exists a unique monic polynomial P(z) of degree 2N
such that

(7.22)

∫
α j

P(z)

R(z)
dz = 0 , | j | = 1, . . . , N .

This equation, combined with (7.6) and (7.7), yields

g̃(∞) = 1

2π i

∫
γm

�

R+(ζ )
ζ 2N dζ + 1

2π i

∫
γc

�

R(ζ )
ζ 2N dζ

= 1

2π i

∫
γm

�

R+(ζ )
P(ζ )dζ + 1

2π i

∫
γc

�

R(ζ )
P(z)dζ

= 1

2π i

∫
γc

�P(ζ )

R(ζ )
dζ .

(7.23)

According to (2.33), m(mod)(∞) = e2 i
ε

g(∞)σ3 and m̃(mod) = m(mod)e−2 i
ε

g̃σ3 ;

hence m̃(mod)(z) = e2 i
ε
[g(∞)−g̃(∞)]σ3N−1(∞)N (z). Then in the limit ε → 0

(7.24) m(2)(z) = e2 i
ε
[g(∞)−g̃(∞)]σ3N

−1(∞)N (z)e−2 i
ε
[g(z)−g̃(z)]σ3 .

From (7.21)

(7.25) detN (∞) =
θ(u(∞) − Ŵ

2π
+ d1)θ(u(∞) + Ŵ

2π
) + θ(u(∞) + Ŵ

2π
+ d1)θ(u(∞) − Ŵ

2π
)

θ(u(∞) + d1)θ(u(∞))
.

Alternatively, taking into account that detN (z) is constant in z, we obtain

detN (∞) = detN (α1) = θ(− Ŵ
2π

+ d1)θ( Ŵ
2π

) + θ( Ŵ
2π

+ d1)θ(− Ŵ
2π

)

θ(d1)θ(0)

= 2
θ(− Ŵ

2π
+ d1)θ( Ŵ

2π
)

θ(d1)θ(0)
.

(7.26)
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Here we have used the fact that d1 is a half period.

We now compute

(7.27) (N−1(∞)N (z))12 =

i
λ−1M2(∞, d1)M2(z, 0) − λM2(∞, 0)M2(z, d1)

detN (∞)
≡ A

z
+ O(z−2)

as z → ∞. Direct calculations show that for any period 2d ∈ C
2N

λ(z) = 1 + i

2z
�

N∑
j=1

(α4 j−2 − α4 j ) + O(z−2) ,

M2(z, d) = M2(∞, d)

[
1 − 1

z
∇ ln

θ(u(∞) + Ŵ
2π

+ d)

θ(u(∞) + d)

· ω0 + O(z−2)

]
= M2(∞, d)

[
1 − 1

z

(∇θ(u(∞) + Ŵ
2π

+ d)

θ(u(∞) + Ŵ
2π

+ d)

− ∇θ(u(∞) + d)

θ(u(∞) + d)

)
· ω0 + O(z−2)

]

(7.28)

as z → ∞, where ω0 is the leading coefficient for Rω
dz , i.e., ω ∼ ω0

z2 dz. Taking into

account (7.26)–(7.28) and (7.15), we obtain

A = M2(∞, d1)M2(∞, 0)

detN (∞)

×
[
�

N∑
j=1

(α4 j−2 − α4 j ) + i∇ ln
M2(u(∞), d1)

M2(u(∞), 0)
· ω0

]
= θ(0)θ(d1)

2θ(u(∞))θ(u(∞) + d1)

× θ(u(∞) + Ŵ
2π

+ d1)θ(u(∞) + Ŵ
2π

)

θ( Ŵ
2π

+ d1)θ( Ŵ
2π

)

×
[
�

N∑
j=1

(α4 j−2 − α4 j ) + i∇ ln
θ(u(∞) + Ŵ

2π
+ d1)θ(u(∞))

θ(u(∞) + d1)θ(u(∞) + Ŵ
2π

)
· ω0

]
.

(7.29)

If we write m(2) = I +m(2)

1 /z + O(z−2) as z → ∞, then the leading asymptotic

term for the solution is given by

(7.30) q0(x, t, ε) = −2
(
m(2)

1

)
12

= −2Ae
4i
ε

[g(∞)−g̃(∞)] ,
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where expressions for A and g̃(∞) are given in (7.23) and (7.29), respectively, and

according to (3.17),

(7.31) g(∞) = 1

2π i

∫
γm

f (ζ ) + W

R+(ζ )
P(ζ )dζ + 1

2π i

∫
γc

�

R(ζ )
P(ζ )dζ .

Let us now summarize the results of the present section. Let the values (x, t) for

the initial value problem (1.1)–(1.2) belong to a genus 2N region. Let αj (x, t), j =
0, 1, . . . , 4N + 1, be the branch points that determine the corresponding Riemann

surface R, and let the corresponding vectors W, � ∈ R
2N be determined according

to (3.8), (7.10), and the comments after (7.4).

THEOREM 7.1 In the region of genus 2N the leading-order term of the solution
(as ε → 0) to (1.1)–(1.2) has the form of

(7.32) q0(x, t, ε) = −2Ae
2

επ

∫
γm

f (ζ )P(ζ )
R(ζ )

dζ
.

Here the order 2N polynomial P(z) is determined by (7.22), and A is given by
(7.29), where

• the vector ω0 is a leading coefficient of the basic holomorphic differentials
ω for R, dual to α,

• u(z) = ∫ z
α1

ω, and

• Ŵ = −2 i
ε
(W + 2

∫
γc

�ω) and d1 = 1
2
(1, 1, . . . , 1)T.

8 Alternative Formulae for Solving the Model RHP

An alternative way of solving the model PHP P (mod) (2.31) is based on the

observation that, due to the Schwarz symmetry of the problem, the constants Wj

and �j attain the same values on the arcs γ ±
m, j and γ ±

c, j , respectively. Therefore,

the contour 
(mod) can be deformed, as shown in Figure 8.1, into the new contour


̃(mod) that consists of 2N +1 vertical segments ν̃k connecting the branch points α2k

and ᾱ2k = α2k+1, k = 0, 1, . . . , 2N . The thin solid and dotted lines in Figure 8.1

show deformations of main and complementary arcs of 
(mod), respectively. (In

general, the order of α2k along the contour 
(mod)+ does not necessarily coincide

with the order of −�α2k , k = 0, 1, . . . , 2N , as shown in Figure 8.1. However, if

necessary, we can always deform some vertical cuts ν̃k into curves, connecting the

same endpoints and symmetric with respect to the real axis, so that the order in

which they intersect the real axis coincides with the order of α2k along the contour


(mod)+.)
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α
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α
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α

α
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FIGURE 8.1. Deformation of the contour 
(mod) into 
̃(mod).

We can set an equivalent RHP for the matrix function m(mod)(z) with the contour


̃(mod) and constant (in z) jump matrices

(8.1)

(
0 e− 2i

ε
Wj

−e
2i
ε

Wj 0

)(
e

2i
ε

�j+1 0

0 e− 2i
ε

�j+1

)−1

=(
0 e− 2i

ε
(Wj −�j+1)

−e
2i
ε

(Wj −�j+1) 0

)
on ν̃2 j , j = 0, 1, . . . , N , and, correspondingly,

(8.2)

(
0 e− 2i

ε
(Wj −�j )

−e
2i
ε

(Wj −�j ) 0

)
on ν̃2 j−1, j = 1, . . . , N . In order to normalize this RHP, we introduce

m̃(mod) = e− i
ε
�1σ3m(mod)e

i
ε
�1σ3 .

Then the RHP P̃ (mod) for the matrix m̃(mod) becomes

(8.3) RHP P̃ (mod) : m̃(mod)
+ = m̃(mod)

− Ṽ (mod) when z ∈ 
̃(mod) ,

where the contour 
̃(mod) =⋃2N
j=0 ν̃j and the piecewise constant jump matrix

(8.4) Ṽ (mod) =



(
0 e− 2i

ε
(Wj −�j+1+�1)

−e
2i
ε

(Wj −�j+1+�1) 0

)
when z ∈ ν̃2 j , j = 0, . . . , N ,(

0 e− 2i
ε

(Wj −�j +�1)

−e
2i
ε

(Wj −�j +�1) 0

)
when z ∈ ν̃2 j−1, j = 1, . . . , N ,
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FIGURE 8.2. Contour 
̃(mod).
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FIGURE 8.3. Basic cycles Aj and B j .

and m̃(mod)(∞) = e(2i/ε)g(∞)σ3 ; see Figure 8.2. It is now clear that Ṽ (mod) = ( 0 1
−1 0 )

on ν̃0.

To simplify notation, we write the piecewise constant matrix

(8.5) Ṽ (mod) =
(

0 ei�̃

−e−i�̃ 0

)
,

where �̃ attains the corresponding values on each vertical segment ν̃j , j = 0, 1,

. . . , 2N . We also denote by α̃j and β̃j the beginning and endpoints of the segment

ν̃j (so that α̃0 = α1, β̃0 = α0, α̃1 = α2, . . . , β̃2N = α4N+1); see Figure 8.2.

As in Section 7, we introduce the canonical homology basis Aj , B j , j =
1, . . . , N , of the hyperelliptic surface R̃(x, t), determined by the cuts ν̃j of RHP

P̃ (mod); see Figure 8.3. The dotted curves in Figure 8.3 are passing through the sec-

ond sheet. Some notation from Section 7, like ω, θ , etc., are used in the present sec-

tion with respect to the hyperelliptic surface R̃(x, t) and homology basis Aj , B j .

In particular, we introduce u(z) = ∫ z
α̃0

ω, where ω = (ω1, ω2, . . . , ω2N ) is the basis
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of holomorphic differentials dual to A cycles, i.e.,

(8.6)

∫
Aj

ωk = δjk ,

j, k = 1, . . . , N , and vector

(8.7) M(z, d) ≡ (M1,M2) =
(

θ(u(z) − �̂
2π

+ d)

θ(u(z) + d)
,
θ(−u(z) − �̂

2π
+ d)

θ(−u(z) + d)

)
,

where �̂ = (�̃1, �̃2, . . . , �̃2N )T and d ∈ Z
2N is a vector to be determined. Then

M satisfies

(8.8) M+ = M−

(
0 ei�̃

e−i�̃ 0

)

on 
̃(mod) (see [41]).

Introduce

(8.9) λ(z) =
( 2N∏

j=0

z − β̃j

z − α̃j

) 1
4

with branch cuts along ν̃j . We choose the branch of λ(z) such that limz→∞ λ(z) = 1

and that λ+ = iλ− on ν̃j . One can verify directly that

(8.10) L+ = L−Ṽ (mod) ,

where

(8.11) L(z) =
1

2

(
(λ(z) + λ−1(z))M1(z, d) −i(λ(z) − λ−1(z))M2(z, d)

i(λ(z) − λ−1(z))M1(z,−d) (λ(z) + λ−1(z))M2(z,−d)

)
.

If λ(z) − λ−1(z) has precisely 2N simple zeros z1, z2, . . . , z2N , we choose

(8.12) d = −
N∑

j=1

∫ X2(zj )

α̃j

ωj ,

where X2(zj ) is the preimage of zj on the second sheet of the hyperelliptic surface.

This choice of d implies that L(z) is analytic off 
̃(mod). So,

(8.13) m̃(mod)(z) = e
2i
ε

g(∞)σ3L
−1(∞)L(z)

is the solution to the RHP Ṽ (mod) and

(8.14) m(mod)(z) = e
2i
ε

[g(∞)+ 1
2 �1]σ3L

−1(∞)L(z)e− i
ε
�1σ3 .
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Using now the fact that

(8.15) λ(z) − λ−1(z) = 1

2z

2N∑
j=0

(α̃j − β̃j ) + O(z−2) as z → ∞

and

m(2) → m(mod)e− 2i
ε

g(∞)σ3 as ε → 0 ,

we can rewrite (7.30) as

q0(x, t, ε) = −2
(
m(2)

1

)
12

=
(

i

2

)
M2(∞, d)

M1(∞, d)

2N∑
j=0

(α̃j − β̃j )e
2i
ε

[2g(∞)+�1](8.16)

= θ(u(∞) + �̂
2π

− d)θ(u(∞) + d)

θ(u(∞) − �̂
2π

+ d)θ(u(∞) − d)
e

2i
ε

[2g(∞)+�1]
2N∑
j=0

(−1) j bj ,

where, according to (3.17),

(8.17) g(∞) = 1

2π i

∫
γm

f (ζ ) + W

R+(ζ )
ζ 2N dζ + 1

2π i

∫
γc

�

R(ζ )
ζ 2N dζ .

We can now restate Theorem 7.1 as follows:

THEOREM 8.1 Under the condition that λ(z) − λ−1(z), defined through (8.9), has
2N simple zeros, the leading-order term of the solution to (1.1)–(1.2) (as ε → 0)

has the form (8.16) in the region of genus 2N.

The expression (8.16) for q0(x, t, ε) looks somewhat simpler than (7.29); how-

ever, it is worth mentioning that the constant vector d in (8.16) requires additional

calculations, and, most importantly, it is not clear how to check the condition about

zeros of λ(z)−λ−1(z). Another advantage of expression (8.16) is that the constant

vector �̂ in the argument of theta functions (which grows like O(ε−1) as ε → ∞)

is real. Because of that latter fact, we calculate below m(mod) through the RHP

P̃ (mod) exactly as in Section 7 (i.e., without any conditions on λ(z)) and get the

following version of Theorem 7.1:

THEOREM 8.2 In the region of genus 2N, the leading-order term of the solution to
(1.1)–(1.2) (as ε → 0) has the form

(8.18) q0(x, t, ε) = −2Ae
2i
ε

[2g(∞)+�1] ,
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where g(∞) is given by (8.17) and

A = M2(∞, d1)M2(∞, 0)

detN (∞)

×
[

− �
2N∑
j=0

(β̃j − α̃j ) + i∇ ln
M2(u(∞), d1)

M2(u(∞), 0)
· ω0

]

= θ(0)θ(d1)

θ(u(∞))θ(u(∞) + d1)

θ(u(∞) + �̂
2π

+ d1)θ(u(∞) + �̂
2π

)

θ( �̂
2π

+ d1)θ( �̂
2π

)

×
[
−

2N∑
j=0

(−1) j bj + i∇ ln
θ(u(∞) + �̂

2π
+ d1)θ(u(∞))

θ(u(∞) + d1)θ(u(∞) + �̂
2π

)
· ω0

]
.

(8.19)

Here theta functions, differentials ω, and M(z, d) are defined through the hy-
perelliptic surface R̃(x, t) associated with the contour 
̃(mod), i.e., through the
vertical cuts ν̃j , j = 0, 1, . . . , 2N , and the canonical homology basis Aj , B j ,
j = 1, . . . , N ; see Figure 8.3.

9 Proof of the Error Estimate (1.12)

in the Main Theorem (Theorem 1.1)

To complete the proof of the theorem, it remains to construct the parametrix

at µ

2
and establish (2.37). In our derivation of the parametrix near µ

2
and of the

error estimate (2.37), we will make repeated use of some general formulae, derived

below. To estimate errors in an RHP m+ = m−v, m → I as z → ∞ over a contour

�, one needs to consider certain singular integral equations for RHPs. One of the

equations we may use is

(9.1) m− = I + C−
� m−(v − I ) ,

where the Cauchy integral operator C� is as described in Section 4.2. Once this

equation is solved for m−, we have

(9.2) m = I + C�m−(v − I ) ≡ I + Cvm− .

It is easily checked that m+ = m−v by using the identity C+
� − C−

� = I ; see [41].

To obtain estimates with respect to external parameters, in most cases we need to

have the bound

(9.3)
∥∥(1 − Cv)

−1
∥∥

L2�
≤ c

uniformly with respect to the external parameters involved. Here B � denotes the

Banach algebra of the bounded operators acting on the Banach space B. We will

use the formula

(9.4) m− − I = (I − Cv)
−1Cv I ,

which is easily derived from (9.1).
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FIGURE 9.1. RHP P(A).

Construction of the Parametrix near
µ

2

In order to construct m(app) near µ

2
, we set m(app) = A(z)m(mod)(z), where a

2 × 2 matrix function A(z) satisfies the RHP P (A):

(9.5)
(A(z)m(mod)(z))+ = (A(z)m(mod)(z))−V (4)(z) , z ∈ �A ,

A(z) → I as z → ∞ ;
see Figure 9.1. Here �A = [µ

2
− δ,

µ

2
+ δ].

Since m(mod)(z) is analytic near µ

2
, the jump condition of A(z) becomes

(9.6) A(z)+ = A(z)−vA where vA = m(mod)(z)V (4)(z)m(mod)(z)−1 , z ∈ �A .

The jump matrix V (4) and hence also the jump matrix vA have the form

(9.7) V (4), vA = I + O(e−c|z− µ
2 |/ε) as ε → 0

for some c > 0 uniformly in a neighborhood of µ

2
that does not depend on ε.

Equation (9.7) follows from (2.15)–(2.16) and (4.66)–(4.67).

THEOREM 9.1 There exists a solution A(z) to the RHP P (A) satisfying the estimate
‖A − I‖L∞(rµ/2) = O(ε), where rµ/2 is a circle centered at µ

2
with radius 2δ.

PROOF: Equation (9.1) applied to the RHP P (A) becomes

(9.8) A− = I + C−
�A

A−(vA − I ) .

Once this equation is solved for A− (we show existence below), (9.2) becomes

(9.9) A = I + C�A A−(vA − I ) ≡ I + Cv A− .

We retain the notation Cv instead of the more consistent CvA to avoid more sub-

indexing.

One sees directly from Schwarz symmetry that the jump matrix vA(z) is positive

definite for z ∈ �A. Indeed, in (9.6) V (4) is positive definite and m(mod)(z) is unitary
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on �A; the latter follows from the fact that V (mod) is unitary on 
(mod) and the RHP

P (mod) has a unique solution. By [41], we have the a priori bound

(9.10)
∥∥(1 − Cv)

−1
∥∥

L2(�A)�
≤ λmax + 1 +

√
(λmax + 1)2 − 4λmin

2λmin

,

where

λmin = ess inf
z∈�A

{minimal eigenvalue of v(z)}
and

λmax = ess sup
z∈�A

{maximal eigenvalue of v(z)} .

Thus we only need to show that

(9.11)
∥∥v±1

A

∥∥
L∞ ≤ c1

for some c1 independent of ε and also independent of x , t , and µ, etc.

Since m(mod)(z) is unitary for z ∈ �A, (9.11) is equivalent to

(9.12)
∥∥v±1

∣∣
�A

∥∥
L∞ ≤ c2

for some c2 > 0. But this is obvious from the expression of vA. This proves the

existence of A(z).
We now estimate A(z) on the circle rµ/2. According to (9.9),

(9.13) A(z) = I + 1

2π i

∫
�A

A−(ζ )(vA(ζ ) − I )dζ

ζ − z
, z ∈ rµ/2 .

Since |ζ − z| ≥ δ,

(9.14) ‖A − I‖L∞(γA) ≤ 1

2πδ

(‖A− − I‖L2(rµ/2)
‖vA − I‖L2(�A) + ‖vA − I‖L1(�A)

)
for some c. The form (9.6) of vA yields

(9.15) ‖vA − I‖L2(�A) = O(ε1/2) , ‖vA − I‖L1(�A) = O(ε) .

Thus, using (9.4),

‖A− − I‖L2(�A) ≤ ‖(1 − Cv)
−1‖L2� ‖CvA I‖L2(�A)

≤ ‖VA − I‖L2(�A) = O(ε1/2) .

Finally, by (9.14),

(9.16) ‖A − I‖L∞(rµ/2) = O(ε) .

This is the required estimate. �

PROOF OF THE MAIN ESTIMATE (2.37): The introduction of m(err) peels off

the matrix m(app) from the RHP P (4). The matrix m(err) solves the RHP P (err) that

has a jump uniformly close to I as ε → 0 on 
(err); see Figure 2.11. Therefore [41]

(9.17)
∥∥(1 − CV (5) )−1

∥∥
L2�

≤ c3
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for some c3 and for ε small enough. In the complement of the three circles rα0
, rᾱ0

,

and |z − µ

2
| = δ centered at α0, ᾱ0, and µ

2
, respectively, we obtain

‖V (err) − I‖L p ≤ c4e−c5/ε , 1 ≤ p ≤ ∞, for some c4, c5 > 0 .

On the circles rα0
, rᾱ0

, and rµ/2, we have

(9.18) ‖V (err) − I‖L p = O(ε) , 1 ≤ p ≤ ∞ .

Using (9.4), we obtain∥∥m(err)
− − I

∥∥
L2 ≤

∥∥(1 − CV (err) )−1
∥∥

L2�
‖CV (err) I‖L2

≤ c6‖V (err) − I‖L p = O(ε)
(9.19)

for some c6 > 0.

Now we are ready to estimate (m(err)
1 − I )12, the (12)-entry of the matrix m(err)

1 −
I defined by the expansion which, as mentioned earlier, is the error term. Using

(2.37) and (9.2), we obtain

m(err)
1 = − 1

2π i

∫

(err)

m(err)
− (ζ )(V (err)(ζ ) − I )dζ .

Therefore,

(9.20)
∣∣m(err)

1

∣∣ ≤ c
(‖m(err)

− − I‖L2 ‖V (err) − I‖L2 + ‖V (err) − I‖L1

) = O(ε)

completes the proof of estimate (2.37) and, thus, of (1.12). �

Appendix A: Riemann-Hilbert Formalism

for the Inverse Scattering Problem

We consider a Zakharov-Shabat system

(A.1) iεW ′ =
(

z q
q̄ −z

)
W ,

where a function q(x) bounded on R is called a potential and z ∈ C is called a

spectral parameter. This system has the following symmetry R: W is a solution

for (A.1) with some z ∈ C if and only if Ŵ = iσ2W̄ is a solution for (A.1) with z̄.

This fact can be easily verified. Here and henceforth

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

denote the corresponding Pauli matrices.

Suppose now that the potential q is a continuous function that approaches 0 as

x → ±∞. We introduce a pair of Jost solutions � and � by asymptotic conditions

�1 ∼ Col(1, 0)e
−i zx

ε , �2 ∼ Col(0, 1)e
izx
ε , as x → ∞, z ∈ R ,(A.2)
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and

�1 ∼ Col(1, 0)e
−i zx

ε , �2 ∼ Col(0, 1)e
izx
ε , as x → −∞, z ∈ R.(A.3)

Jost solutions � and � are fundamental solutions to (A.1), which are uniquely

defined by (A.2) and (A.3), respectively. Note that

(A.4) �̂1(x, z) = −�2(x, z̄) and �̂2(x, z) = �1(x, z̄) .

Similar relations take place for the Jost solution �.

Let �1 = a�1 + b�2, where the coefficients a and b depend on z and ε. Then

(A.5)
1

a
�1(x, z) = �1(x, z) + b

a
�2(x, z) .

The ratio r = b
a is called a reflection coefficient, whereas 1

a is called a transmission
coefficient in scattering theory. Roughly speaking, the objective of the inverse

scattering problem is to reconstruct the potential q through the reflection coefficient

r . Note that the change q �→ −q implies r �→ −r . Indeed, q �→ −q implies

W �→ σ3W for an arbitrary solution W to (A.1), so that r �→ −r follows from

(A.2), (A.3), and (A.5).

Applying to the latter equation the symmetry operation R and taking into ac-

count (A.4), we obtain

(A.6)
1

ā
�̂2(x, z̄) = −r̄�1(x, z̄) + �2(x, z̄) .

Consider now the matrices M+ = (�1

a , �2) and M− = (�1,
�2

a ), defined for

z ∈ R in the upper and lower half-planes, respectively. Then, for z ∈ R, we obtain

M+ = M−W , where the so-called jump matrix W is determined by

M+ =
(

�1

a
, �2

)
= (�1 + r�2, �2)

= (�1, �2 − r̄�1)

(
1 + |r |2 r̄

r 1

)
= M−W .

Note that both M± are fundamental solutions of (A.1). It is easy to check that (1)

the matrix m = M exp(− i zx
ε

σ3) satisfies the differential equation

(A.7) iε
d

dx
m = z[σ3, m] +

(
0 q
q̄ 0

)
m ,

and (2) the jump matrix for m on the line �z = 0 is

(A.8) V =
(

1 + |r |2 r̄ e−2 i zx
ε

re2 i zx
ε 1

)
.

The inverse scattering problem can be viewed now as the RH problem for the

matrix function m, i.e., the problem of reconstructing the matrices m+ and m−,

which are analytic and analytically invertible in z in the upper and lower half-

planes, respectively, that satisfy the jump condition with the jump matrix (A.8)
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on the real line and that are normalized by limz→∞ m± = I , where I denotes

the identity matrix. Indeed, if m is the solution to the above RH problem, then

m = I + m1

z + O(z−2) is analytic at infinity. Substituting this expression into

(A.7), we obtain

(A.9) q = −2(m1)12 ,

where the notation (m)i j stands for the (i j)–entry of the matrix m.

It is well-known that if the potential q0(x, t, ε) evolves in t according to the

NLS of our interest, then the evolution of the reflection coefficient is given by

r(t) = r(0) exp( 4i z2t
ε2 ). So, to reconstruct q = q0(x, t, ε), we have to solve the RH

problem

(A.10) m+ = m−

(
1 + |r̃ |2 r̃∗

r̃ 1

)
= m−V ,

where r̃ = r exp(( 4i z2t
ε2 + 2 i zx

ε
), r = r(0), and r̃∗(z) denotes the function that is

complex conjugate to r̃(z) for z ∈ R. The upper half-plane is the positive side.

This is the original problem.

Appendix B: Asymptotic Properties of the Reflection Coefficient

The singularities of the reflection r (0)(z) in the upper half-plane are simple poles

located at the points w+ − w = k and w − 1 − w+ − w− = j , where k and j are

nonnegative integers [33]. Taking into account (1.7), these equations lead to two

strings of ε-spaced poles

(B.1) zk = i

[√
1 − µ2

4
− ε
(

k + 1

2

)]
, zj = µ

2
+ iε

(
j + 1

2

)
.

The string zj consists of “nonsoliton” poles. The string zk determines the standard,

or “soliton,” poles of the reflection coefficient. They are present in the upper half-

plane only if µ < 2.

In order to use the Stirling formula to obtain the asymptotic expansion of the

reflection coefficient as ε → 0, we have to exclude the regions on the complex

upper half-plane, where the Stirling formula is not valid. It is easy to see that, in

our case, there are two such regions D1,2: the region D1 is the union of a small

half-disk around µ

2
, lying in the upper half-plane, and a narrow sector, centered at

µ

2
, and containing all the poles zj ; the region D2 (which is nonempty only in the

case µ < 2) is the union of a small disk around T and the part of a narrow sector,

centered at T , containing all the poles zk lying in the upper half-plane.

Let S = S1 ∪S2, where S1 and S2 are parts of the upper half-plane to the left and

to the right of the region D1, where S1 does not contain D2; see Figure B.1. It is

easy to see that all the gamma functions in (1.6) have uniform Stirling asymptotic

expansions in S.
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0 µ/2

T S

S

2

1

FIGURE B.1. Regions of Stirling asymptotics.

We assume that all the gamma functions in r (0)(z) are defined in S1. All of them

but �(1 − w + w+ + w−) have analytic continuation to the rest of S through the

ray �z = µ

2
, whereas �(1 − w + w+ + w−) has analytic continuation below this

ray.

LEMMA B.1 The function f (z, ε) = 1
2
iε ln r (0)(z) has asymptotics

(B.2) f (z, ε) = f (0)

0 (z) + π

2
ε + f2(z)ε

2 + O(ε3) , ε → 0 ,

uniformly in S, where

f (0)

0 (z) =
(µ

2
− z
)[ iπ

2
+ ln(

µ

2
− z)

]
+ z + T

2
ln(z + T )

+ z − T

2
ln(z − T ) − T tanh−1 T

µ/2
+ µ

2
ln 2 if z ∈ S1,

f (0)

0 (z) =
(µ

2
− z
)[ iπ

2
+ ln(z − µ

2
)

]
+ z + T

2
ln(z + T )

+ z − T

2
ln(z − T ) − T tanh−1 T

µ/2
+ µ

2
ln 2 if z ∈ S2,

f (0)

2 (z) = − µ

24

[
5z

z2 − T 2
+ 1

z − µ

2

− µ

]
.

(B.3)

Here we take the standard branches of all logarithms; i.e., the logarithms are real
when their arguments are positive.
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PROOF: By definition,

f (z, ε) = 1

2
iε ln r (0)(z)

= iε

2

{
− iπ

2
+ ln ε − iµ

ε
ln 2 + ln

�( 1
2

+ i
ε
(z − µ

2
))

�( 1
2

− i
ε
(z − µ

2
))

+ ln

[
�
(1

2
− i

ε
(z + T )

)
�
(1

2
− i

ε
(z − T )

)]
− ln

[
�
( i

ε

(
T − µ

2

))
�
(
− i

ε

(
T + µ

2

))]}
,

(B.4)

where �z ≥ 0. To determine the asymptotics of f , we will make use of the Stirling

formula

(B.5) ln �(s) =
(

s − 1

2

)
ln s − s + 1

2
ln(2π) + 1

12s
+ O(s−2)

as s → ∞, |arg s| < π ,

which is valid in any sector |arg s| < π of the complex s-plane.

Let us denote as ln rj , j = 1, 2, 3, the last three logarithmic terms in (B.4).

Direct application of the Stirling formula to ln rj , j = 1, 2, 3, yields

ln r1 ∼ i

ε

(
z − µ

2

) [
ln

(
1

2
+ i

ε

(
z − µ

2

))
+ ln

(
1

2
− i

ε

(
z − µ

2

))
− 2

]
− iε

6(z − µ

2
)
,

ln r2 ∼ − i

ε
(z + T )

[
ln

(
− i

ε
(z + T )

)
+ ln

(
1 + iε

2(z + T )

)]
− i

ε
(z − T )

[
ln
(− i

ε
(z − T )

)
+ ln

(
1 + iε

2(z − T )

)]
+ 2

i z

ε
− 1 + ln(2π) + iεz

6(z2 − T 2)

− ln r3 ∼ i

ε

(µ

2
+ T

)
ln

(
− i

ε

(µ

2
+ T

))
+ i

ε

(µ

2
− T

)
ln

(
− i

ε

(µ

2
− T

))
+ 1

2
ln

(
µ2

4
− T 2

)
+ ln

(
− i

ε

)
− iµ

ε
− iεµ

12

(B.6)

with the accuracy of O(ε2).
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It is now easy to check that ln r2 and ln r3 have, correspondingly, 0 and − iπ
2

constant terms in the ε expansion. Substituting (B.6) into (B.4), we see after some

algebra that all terms containing ln ε cancel each other and we obtain

f (z, ε) =
(µ

2
− z
)[ iπ

2
+ ln

(µ

2
− z
)]

+ z + T

2
ln(z + T )

+ z − T

2
ln(z − T ) − T tanh−1 T

µ/2
− xz − 2t z2

+ µ

2
ln 2 + π

2
ε − ε2µ

24

[
5z

z2 − T 2
+ 1

z − µ

2

− µ

]
+ O(ε3)

(B.7)

as ε → 0 uniformly in S, where the O(ε3) part has asymptotic expansion in powers

of ε starting with ε3. The proof is complete. �

COROLLARY B.2 On the real z-axis, |r (0)(z)| is exponentially growing on (−µ

2
,

µ

2
)

and exponentially decaying on (−∞,−µ

2
) ∪ (

µ

2
,∞) as ε → 0. The growth and

decay are uniform away from some neighborhoods of the points ±µ

2
.

PROOF: Since |r (0)(z)| = e−2 i
ε
� f (z,ε), the growth or decay of |r (0)(z)| is deter-

mined by the sign of � f (z, ε). According to (B.2),

(B.8) � f (z, ε) =
(µ

2
− z
)[ iπ

2
+ � ln

(µ

2
− z
)]

+ z

2
� ln(z2 − T 2) + O(ε3)

when z ∈ R. Note that � ln(z2 − T 2) = 0 if z ≥ T when µ ≥ 2 and if z > 0

when µ < 2, and � ln(z2 − T 2) = 2π if z ≤ −T when µ ≥ 2 and if z < 0

when µ < 2. If z ∈ (−T, T ), then � ln(z2 − T 2) = −π when µ ≥ 2. According

to the remark about the analytic continuation of gamma functions, the ln(
µ

2
− z)

term in (B.2) is real for all real z �= µ

2
. Combining these observations, we get

� f0(z) = (
µ

2
− z)π

2
if z ≥ T when µ ≥ 2 and if z > 0 when µ < 2; � f0(z) =

(
µ

2
− z)π

2
+ π z = (

µ

2
+ z)π

2
if z ≤ −T when µ ≥ 2 and if z < 0 when µ < 2.

If z ∈ (−T, T ) then � f0(z) = (
µ

2
− z)π

2
+ π

2
z = µ

2
π
2

when µ ≥ 2. As we see, in

all cases � f0(z) > 0 on (−µ

2
,

µ

2
) and negative if |z| >

µ

2
, z ∈ R. Thus, |r (0)(z)| is

exponentially growing on (−µ

2
,

µ

2
) and exponentially decreasing outside [−µ

2
,

µ

2
].

The corollary is proven. �

Remark B.3. It is easy to see that

(B.9) |r(z, ε)| = ε

∣∣∣∣�( 1
2

− i
ε
(z + T ))�( 1

2
− i

ε
(z − T ))

�( i
ε
(T − µ

2
))�(− i

ε
(T + µ

2
))

∣∣∣∣ .
In the case |µ| ≥ 2, i.e., in the no-solitons case, there is a simple way to analyze

the behavior of |r (0)(z)| on R. Indeed, we can use the well-known properties of the

gamma function (see, e.g., section 8.332 in [21]) to evaluate

(B.10) |r(z, ε)| =
∣∣∣∣ cosh( 2πT

ε
) − cosh(π

µ

ε
)

cosh( 2πT
ε

) + cosh(2π z
ε
)

∣∣∣∣ 1
2

.
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FIGURE C.1. Deformation of the contour.

According to this estimate, |r(z, ε)| grows exponentially in 1
ε

as ε → 0+ when

|z| < |µ

2
| and decreases exponentially when |z| > |µ

2
|.

Remark B.4. The conclusion of the lemma is also valid for µ = 0. It is interesting,

however, to consider the behavior of r (0) at z = 0. In the case µ = 0 we have

α = −β = 1
ε
, γ = 1

2
− i z

ε
, so that

(B.11) r(0, ε) = −iε
�( 1

2
− 1

ε
)�( 1

2
+ 1

ε
)

�(− 1
ε
)�( 1

ε
)

= tanh
iπ

ε
.

As we see, r(0, ε) is singular when ε = 1
k+1/2

, k ∈ N.

Appendix C: Calculations of Equations (4.2)

To compute the integrals (4.2) we deform the contour of integration as shown

on Figure C.1.

If f (z̄) = f (z) for all z, then both f ′(z) and z f ′(z) possess this property. Thus,

for any such function f ,∫ a

α

f (ζ )

R+(ζ )
dζ +

∫ µ
2

�α

f (ζ ) − f (ζ )

R+(ζ )
dζ

= 2i

[ ∫ b

0

� f (a + iβ)
dβ√

b2 − β2
−
∫ µ

2

a

�[ f (x)]dx√
b2 + (x − a)2

]
= 0

(C.1)

where α = a + ib and ζ = a + iβ for the first integral. Therefore, the system (4.2)

can be written as

(C.2)

∫ b

0

�ϕ(a + iβ)
dβ√

b2 − β2
−
∫ µ

2 −a

0

�ϕ(a + ξ)
dξ√

b2 + ξ 2
= 0 ,

where the function ϕ is substituted for both f ′(z) and z f ′(z).
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Note that

(C.3) � f ′(a + ξ) = π

2
, �(a + ξ) f ′(a + ξ) = π

2
(a + ξ) .

Since 1
2

ln(z2 + 1 − µ2

4
) = 1

2
[ln(z − T ) + ln(z + T )], we obtain

� f ′(a + iβ) = 1

2

(
ln
[
(a − T )2 + β2

]+ ln
[
(a + T )2 + β2

])
− 1

2
ln

[(µ

2
− a
)2

+ β2)

]
− 4ta − x ,

�(a + iβ) f ′(a + iβ) = a

4

(
ln
[
(a − T )2 + β2

]+ ln
[
(a + T )2 + β2

])
− β

2

[
tan−1 β

a − T
+ tan−1 β

a + T

]
− a

2
ln((1 − a)2 + β2)

− β tan−1 β
µ

2
− a

+ πβ

2
− 4t (a2 − β2) − ax ,

(C.4)

where the fact that �[z ln z] = �z ln |z| − �z arg z is used for the latter expression.

Computations of the integrals of (C.3) yield

−
∫ µ

2 −a

0

�[ f ′(a + ξ)]dξ√
b2 + ξ 2

= π

2

∫ µ
2 −a

0

dξ√
b2 + ξ 2

= π

2
ln
(
ξ +

√
ξ 2 + b2

)∣∣µ
2 −a

0
(C.5)

= π

2

[
ln

(
µ

2
− a +

√(µ

2
− a
)2

+ b2

)
− ln b

]
and

−
∫ µ

2 −a

0

�[(a + ξ) f ′(a + ξ)]dξ√
b2 + ξ 2

= π

2

∫ µ
2 −a

0

(a + ξ)dξ√
b2 + ξ 2

= π

2

[
a

∫ µ
2 −a

0

dξ√
b2 + ξ 2

+
∫ µ

2 −a

0

ξdξ√
b2 + ξ 2

]
= π

2

[√
b2 + ξ 2 + a ln(ξ +

√
ξ 2 + b2 )

]µ
2 −a

0

= π

2

[√(µ

2
− a
)2

+ b2

+ a ln

((µ

2
− a
)

+
√(µ

2
− a
)2

+ b2

)
− b − a ln b

]
.
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In order to compute the integrals of (C.4), we recall that

∫ b

0

dβ√
b2 − β2

= sin−1 β

b

∣∣∣∣b
0

= π

2
,

∫ b

0

βdβ√
b2 − β2

= −
√

b2 − β2

∣∣∣∣b
0

= b ,

∫ b

0

β2dβ√
b2 − β2

= −β

2

√
b2 − β2 + b2

2
sin−1 β

b

∣∣∣∣b
0

= πb2

4
,

∫ b

0

ln(K 2 + β2)√
b2 − β2

dβ =
[

β = bt
dβ = bdt

]

=
∫ 1

0

ln K 2 + ln(1 + b2

K 2 t2)√
1 − t2

dt

= π ln K +
∫ 1

0

ln(1 + b2

K 2 t2)√
1 − t2

dt

= π ln K + π ln
1 +

√
1 + b2

K 2

2

= π ln
K + √

K 2 + b2

2
(see [21], sec. 4.295.38),∫ b

0

β arctan Kβ√
b2 − β2

dβ = −
√

b2 − β2 arctan Kβ

∣∣∣∣b
0

+ K

∫ b

0

√
b2 − β2

1 + K 2β2
dβ

= K b2

∫ 1

0

√
1 − t2 dt

1 + (K 2b2)t2

= π

2

[√
b2 + 1

K 2
− 1

K

]
.

(C.6)

So, the computation of the integral for the first equation in (C.4) yields

π

4

[
ln

a − T +
√

(a − T )2 + b2

2
+ ln

a + T +
√

(a + T )2 + b2

2

]

− π

2

[
ln

µ

2
− a +

√
(

µ

2
− a)2 + b2

2
+ x + 4ta

]
.

(C.7)
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Substituting this together with the first integral from (C.5) into (C.2) yields

(C.8) ln
[
a − T +

√
(a − T )2 + b2

]+ ln
[
a + T +

√
(a + T )2 + b2

] =
2[ln b + x + 4ta] .

The computation of the integral for the second equation in (C.4) yields

aπ

4

(
ln
[
a − T +

√
(a − T )2 + b2

]+ ln
[
a + T +

√
(a + T )2 + b2

]
− 2 ln

[µ
2

− a +
√(µ

2
− a
)2

+ b2

])

− π

4

[√
(a − T )2 + b2 +

√
(a + T )2 + b2 − 2

√(µ

2
− a
)2

+ b2 − µ

]
+ π

2
[b − a(x + 4ta) + 2tb2] .

(C.9)

Substituting this together with the second integral from (C.5) into (C.2) yields

a ln
[
a − T +

√
(a − T )2 + b2

]+ a ln
[
a + T +

√
(a + T )2 + b2

]
− [√(a − T )2 + b2 +

√
(a + T )2 + b2 − µ

]
= 2a(x + 4ta) − 4tb2 .

(C.10)

Combining (C.8) and (C.10), we get the system

(C.11)


√

(a − T )2 + b2 +
√

(a + T )2 + b2 = µ + 4tb2[
a − T +

√
(a − T )2 + b2

][
a + T +

√
(a + T )2 + b2

] = b2e2(x+4ta) .

In the particular case µ = 2, this system becomes

(C.12)


√

a2 + b2 = 1 + 2tb2

a + √
a2 + b2 = be(x+4ta).
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